These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
94 related items for PubMed ID: 11875190
1. Transfer of the Rf-1 region from FHH onto the ACI background increases susceptibility to renal impairment. Provoost AP, Shiozawa M, Van Dokkum RP, Jacob HJ. Physiol Genomics; 2002 Feb 28; 8(2):123-9. PubMed ID: 11875190 [Abstract] [Full Text] [Related]
2. Renal damage susceptibility and autoregulation in RF-1 and RF-5 congenic rats. Van Dijk SJ, Specht PA, Lazar J, Jacob HJ, Provoost AP. Nephron Exp Nephrol; 2005 Feb 28; 101(2):e59-66. PubMed ID: 15976509 [Abstract] [Full Text] [Related]
3. Synergistic QTL interactions between Rf-1 and Rf-3 increase renal damage susceptibility in double congenic rats. Van Dijk SJ, Specht PA, Lazar J, Jacob HJ, Provoost AP. Kidney Int; 2006 Apr 28; 69(8):1369-76. PubMed ID: 16541022 [Abstract] [Full Text] [Related]
4. Interaction between Rf-1 and Rf-4 quantitative trait loci increases susceptibility to renal damage in double congenic rats. Van Dijk SJ, Specht PA, Lutz MM, Lazar J, Jacob HJ, Provoost AP. Kidney Int; 2005 Dec 28; 68(6):2462-72. PubMed ID: 16316323 [Abstract] [Full Text] [Related]
5. Blood pressure and the susceptibility to renal damage after unilateral nephrectomy and L-NAME-induced hypertension in rats. van Dokkum RP, Jacob HJ, Provoost AP. Nephrol Dial Transplant; 2000 Sep 28; 15(9):1337-43. PubMed ID: 10978388 [Abstract] [Full Text] [Related]
6. Absence of an interaction between the Rf-1 and Rf-5 QTLs influencing susceptibility to renal damage in rats. van Dijk SJ, Specht PA, Lazar J, Jacob HJ, Provoost AP. Nephron Exp Nephrol; 2006 Sep 28; 104(3):e96-e102. PubMed ID: 16837819 [Abstract] [Full Text] [Related]
7. Genetic differences define severity of renal damage after L-NAME-induced hypertension in rats. Van Dokkum RP, Jacob HJ, Provoost AP. J Am Soc Nephrol; 1998 Mar 28; 9(3):363-71. PubMed ID: 9513898 [Abstract] [Full Text] [Related]
8. Substitution of chromosome 1 ameliorates L-NAME hypertension and renal disease in the fawn-hooded hypertensive rat. Mattson DL, Kunert MP, Roman RJ, Jacob HJ, Cowley AW. Am J Physiol Renal Physiol; 2005 May 28; 288(5):F1015-22. PubMed ID: 15644486 [Abstract] [Full Text] [Related]
9. Difference in susceptibility of developing renal damage in normotensive fawn-hooded (FHL) and August x Copenhagen Irish (ACI) rats after N(omega)-nitro-L-arginine methyl ester induced hypertension. van Dokkum RP, Jacob HJ, Provoost AP. Am J Hypertens; 1997 Oct 28; 10(10 Pt 1):1109-16. PubMed ID: 9370381 [Abstract] [Full Text] [Related]
10. Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Cowley AW, Jacob HJ. Am J Physiol Renal Physiol; 2007 Dec 28; 293(6):F1905-14. PubMed ID: 17898042 [Abstract] [Full Text] [Related]
11. Genetic susceptibility of the donor kidney contributes to the development of renal damage after syngeneic transplantation. Kouwenhoven EA, van Dokkum RP, Marquet RL, Heemann UW, de Bruin RW, IJzermans JN, Provoost AP. Am J Hypertens; 1999 Jun 28; 12(6):603-10. PubMed ID: 10371370 [Abstract] [Full Text] [Related]
12. Impaired autoregulation of renal blood flow in the fawn-hooded rat. Van Dokkum RP, Alonso-Galicia M, Provoost AP, Jacob HJ, Roman RJ. Am J Physiol; 1999 Jan 28; 276(1):R189-96. PubMed ID: 9887194 [Abstract] [Full Text] [Related]
13. Proteinuria and glomerulosclerosis in the Sabra genetic rat model of salt susceptibility. Yagil C, Sapojnikov M, Katni G, Ilan Z, Zangen SW, Rosenmann E, Yagil Y. Physiol Genomics; 2002 Jan 28; 9(3):167-78. PubMed ID: 12045297 [Abstract] [Full Text] [Related]
14. Congenic strains confirm the presence of salt-sensitivity QTLs on chromosome 1 in the Sabra rat model of hypertension. Yagil C, Hubner N, Kreutz R, Ganten D, Yagil Y. Physiol Genomics; 2003 Jan 15; 12(2):85-95. PubMed ID: 12441404 [Abstract] [Full Text] [Related]
15. Pathogenesis of glomerular injury in the fawn-hooded rat: effect of unilateral nephrectomy. Simons JL, Provoost AP, De Keijzer MH, Anderson S, Rennke HG, Brenner BM. J Am Soc Nephrol; 1993 Dec 15; 4(6):1362-70. PubMed ID: 8130363 [Abstract] [Full Text] [Related]
16. Evidence of gene-gene interactions in the genetic susceptibility to renal impairment after unilateral nephrectomy. Shiozawa M, Provoost AP, Dokkum RPEV, Majewski RR, Jacob HJ. J Am Soc Nephrol; 2000 Nov 15; 11(11):2068-2078. PubMed ID: 11053483 [Abstract] [Full Text] [Related]
17. Genetic linkage of albuminuria and renal injury in Dahl salt-sensitive rats on a high-salt diet: comparison with spontaneously hypertensive rats. Siegel AK, Kossmehl P, Planert M, Schulz A, Wehland M, Stoll M, Bruijn JA, de Heer E, Kreutz R. Physiol Genomics; 2004 Jul 08; 18(2):218-25. PubMed ID: 15161966 [Abstract] [Full Text] [Related]
18. Genetic effects of blood pressure quantitative trait loci on hypertension-related organ damage: evaluation using multiple congenic strains. Ishikawa N, Harada Y, Maruyama R, Masuda J, Nabika T. Hypertens Res; 2008 Sep 08; 31(9):1773-9. PubMed ID: 18971556 [Abstract] [Full Text] [Related]
19. Renal myogenic constriction protects the kidney from age-related hypertensive renal damage in the Fawn-Hooded rat. Vavrinec P, Henning RH, Goris M, Landheer SW, Buikema H, van Dokkum RP. J Hypertens; 2013 Aug 08; 31(8):1637-45. PubMed ID: 23811996 [Abstract] [Full Text] [Related]
20. Identification of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats. López B, Ryan RP, Moreno C, Sarkis A, Lazar J, Provoost AP, Jacob HJ, Roman RJ. Am J Physiol Renal Physiol; 2006 May 08; 290(5):F1213-21. PubMed ID: 16303858 [Abstract] [Full Text] [Related] Page: [Next] [New Search]