These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 11876259

  • 1. Abietoid seed fatty acid compositions--a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae.
    Wolff RL, Lavialle O, Pédrono F, Pasquier E, Destaillats F, Marpeau AM, Angers P, Aitzetmüller K.
    Lipids; 2002 Jan; 37(1):17-26. PubMed ID: 11876259
    [Abstract] [Full Text] [Related]

  • 2. Fatty acid composition of Pinaceae as taxonomic markers.
    Wolff RL, Lavialle O, Pédrono F, Pasquier E, Deluc LG, Marpeau AM, Aitzetmüller K.
    Lipids; 2001 May; 36(5):439-51. PubMed ID: 11432455
    [Abstract] [Full Text] [Related]

  • 3. General characteristics of Pinus spp. seed fatty acid compositions, and importance of delta5-olefinic acids in the taxonomy and phylogeny of the genus.
    Wolff RL, Pédrono F, Pasquier E, Marpeau AM.
    Lipids; 2000 Jan; 35(1):1-22. PubMed ID: 10695919
    [Abstract] [Full Text] [Related]

  • 4. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis.
    Ran JH, Shen TT, Wu H, Gong X, Wang XQ.
    Mol Phylogenet Evol; 2018 Dec; 129():106-116. PubMed ID: 30153503
    [Abstract] [Full Text] [Related]

  • 5. Saturated and unsaturated anteiso-C19 acids in the seed lipids from Hesperopeuce mertensiana (Pinaceae).
    Destaillats F, Wolff RL, Angers P.
    Lipids; 2002 Mar; 37(3):325-8. PubMed ID: 11942485
    [Abstract] [Full Text] [Related]

  • 6. Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies.
    Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM.
    Genome Biol Evol; 2010 Mar; 2():504-17. PubMed ID: 20651328
    [Abstract] [Full Text] [Related]

  • 7. Regiospecific analysis of conifer seed triacylglycerols by gas-liquid chromatography with particular emphasis on delta5-olefinic acids.
    Destaillats F, Angers P, Wolff RL, Arul J.
    Lipids; 2001 Nov; 36(11):1247-54. PubMed ID: 11795858
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Revisiting the Plastid Phylogenomics of Pinaceae with Two Complete Plastomes of Pseudolarix and Tsuga.
    Sudianto E, Wu CS, Lin CP, Chaw SM.
    Genome Biol Evol; 2016 Jun 27; 8(6):1804-11. PubMed ID: 27352945
    [Abstract] [Full Text] [Related]

  • 11. Alpha-linolenic acid and its delta5-desaturation product, coniferonic acid, in the seed lipids of Tsuga and Hesperopeuce as a taxonomic means to differentiate the two genera.
    Wolff RL, Destaillats F, Angers P.
    Lipids; 2001 Feb 27; 36(2):211-2. PubMed ID: 11269703
    [No Abstract] [Full Text] [Related]

  • 12. Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition.
    Mongrand S, Badoc A, Patouille B, Lacomblez C, Chavent M, Cassagne C, Bessoule JJ.
    Phytochemistry; 2001 Sep 27; 58(1):101-15. PubMed ID: 11524119
    [Abstract] [Full Text] [Related]

  • 13. The unusual occurrence of 14-methylhexadecanoic acid in Pinaceae seed oils among plants.
    Wolff RL, Christie WW, Coakley D.
    Lipids; 1997 Sep 27; 32(9):971-3. PubMed ID: 9307939
    [Abstract] [Full Text] [Related]

  • 14. Cytogenetic and molecular characterization of the Abies alba genome and its relationship with other members of the Pinaceae.
    Puizina J, Sviben T, Krajacić-Sokol I, Zoldos-Pećnik V, Siljak-Yakovlev S, Papes D, Besendorfer V.
    Plant Biol (Stuttg); 2008 Mar 27; 10(2):256-67. PubMed ID: 18304200
    [Abstract] [Full Text] [Related]

  • 15. Karyotype evolution in the Pinaceae: implication with molecular phylogeny.
    Nkongolo KK, Mehes-Smith M.
    Genome; 2012 Nov 27; 55(11):735-53. PubMed ID: 23199570
    [Abstract] [Full Text] [Related]

  • 16. Antioxidant Activity of Essential Oils from Pinaceae Species.
    Ancuceanu R, Anghel AI, Hovaneț MV, Ciobanu AM, Lascu BE, Dinu M.
    Antioxidants (Basel); 2024 Feb 26; 13(3):. PubMed ID: 38539820
    [Abstract] [Full Text] [Related]

  • 17. Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta.
    Wolff RL, Christie WW, Pédrono F, Marpeau AM.
    Lipids; 1999 Oct 26; 34(10):1083-97. PubMed ID: 10580336
    [Abstract] [Full Text] [Related]

  • 18. Delta5-olefinic acids in the seed lipids from four Ephedra species and their distribution between the alpha and beta positions of triacylglycerols. Characteristics common to coniferophytes and cycadophytes.
    Wolff RL, Christie WW, Pédrono F, Marpeau AM, Tsevegsüren N, Aitzetmüller K, Gunstone FD.
    Lipids; 1999 Aug 26; 34(8):855-64. PubMed ID: 10529097
    [Abstract] [Full Text] [Related]

  • 19. High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Delta5-polyenoic fatty acids in triacylglycerols from conifer seed oils.
    Lísa M, Holcapek M, Rezanka T, Kabátová N.
    J Chromatogr A; 2007 Mar 30; 1146(1):67-77. PubMed ID: 17307191
    [Abstract] [Full Text] [Related]

  • 20. Preparation of High Purity Δ5-Olefinic Acids from Pine Nut Oil via Repeated Lipase-Catalyzed Esterification.
    Kim H, Choi N, Kim HR, Lee J, Kim IH.
    J Oleo Sci; 2018 Mar 30; 67(11):1435-1442. PubMed ID: 30404964
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.