These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


444 related items for PubMed ID: 11881120

  • 1. Contractile effects of angiotensin peptides in rat aorta are differentially dependent on tyrosine kinase activity.
    Petrescu G, Costuleanu M, Slatineanu SM, Costuleanu N, Foia L, Costuleanu A.
    J Renin Angiotensin Aldosterone Syst; 2001 Sep; 2(3):180-7. PubMed ID: 11881120
    [Abstract] [Full Text] [Related]

  • 2. [Pharmacological studies on alterations in contractile reactivity in aortas isolated from experimental diabetic rats].
    Kawasaki H.
    Hokkaido Igaku Zasshi; 1997 Nov; 72(6):649-65. PubMed ID: 9465317
    [Abstract] [Full Text] [Related]

  • 3. Animal model for angiotensin II effects in the internal anal sphincter smooth muscle: mechanism of action.
    Fan YP, Puri RN, Rattan S.
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G461-9. PubMed ID: 11841996
    [Abstract] [Full Text] [Related]

  • 4. Inhibitory effects of genistein on ATP-sensitive K+ channels in rabbit portal vein smooth muscle.
    Ogata R, Kitamura K, Ito Y, Nakano H.
    Br J Pharmacol; 1997 Dec; 122(7):1395-404. PubMed ID: 9421287
    [Abstract] [Full Text] [Related]

  • 5. Tyrosine kinases modulate the activity of single L-type calcium channels in vascular smooth muscle cells from rat portal vein.
    Liu H, Sperelakis N.
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1063-8. PubMed ID: 9365814
    [Abstract] [Full Text] [Related]

  • 6. Contractile effects by intracellular angiotensin II via receptors with a distinct pharmacological profile in rat aorta.
    Brailoiu E, Filipeanu CM, Tica A, Toma CP, de Zeeuw D, Nelemans SA.
    Br J Pharmacol; 1999 Mar; 126(5):1133-8. PubMed ID: 10205000
    [Abstract] [Full Text] [Related]

  • 7. Angiotensin II type 1 receptor activation modulates L- and T-type calcium channel activity through distinct mechanisms in bovine adrenal glomerulosa cells.
    Maturana AD, Burnay MM, Capponi AM, Vallotton MB, Rossier MF.
    J Recept Signal Transduct Res; 1999 Mar; 19(1-4):509-20. PubMed ID: 10071781
    [Abstract] [Full Text] [Related]

  • 8. Angiotensin II-induced tyrosine phosphorylation in mesangial and vascular smooth muscle cells.
    Marrero MB, Schieffer B, Bernstein KE, Ling BN.
    Clin Exp Pharmacol Physiol; 1996 Jan; 23(1):83-8. PubMed ID: 8713501
    [Abstract] [Full Text] [Related]

  • 9. Tyrosine kinase inhibition affects type 1 angiotensin II receptor internalization.
    Becker BN, Kondo S, Chen JK, Harris RC.
    J Recept Signal Transduct Res; 1999 Nov; 19(6):975-93. PubMed ID: 10533984
    [Abstract] [Full Text] [Related]

  • 10. Dissociation of angiotensin II-stimulated activation of mitogen-activated protein kinase kinase from vascular contraction.
    Watts SW, Florian JA, Monroe KM.
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1431-8. PubMed ID: 9732408
    [Abstract] [Full Text] [Related]

  • 11. The effect of angiotensin III on protein tyrosine kinase activity in rat pituitary.
    Rebas E, Lachowicz-Ochedalska A.
    Regul Pept; 2005 Aug 15; 130(1-2):14-8. PubMed ID: 15913807
    [Abstract] [Full Text] [Related]

  • 12. Pregnancy-induced modulation of calcium mobilization and down-regulation of Rho-kinase expression contribute to attenuated vasopressin-induced contraction of the rat aorta.
    Katoue MG, Khan I, Oriowo MA.
    Vascul Pharmacol; 2006 Mar 15; 44(3):170-6. PubMed ID: 16406362
    [Abstract] [Full Text] [Related]

  • 13. Antiproliferative action of an angiotensin I-converting enzyme inhibitory peptide, Val-Tyr, via an L-type Ca2+ channel inhibition in cultured vascular smooth muscle cells.
    Toshiro M, Ueno T, Tanaka M, Oka H, Miyamotq T, Osajima K, Matsumoto K.
    Hypertens Res; 2005 Jun 15; 28(6):545-52. PubMed ID: 16231761
    [Abstract] [Full Text] [Related]

  • 14. Lysophosphatidylcholine potentiates vascular contractile responses in rat aorta via activation of tyrosine kinase.
    Suenaga H, Kamata K.
    Br J Pharmacol; 2002 Feb 15; 135(3):789-99. PubMed ID: 11834627
    [Abstract] [Full Text] [Related]

  • 15. AT1 receptors and L-type calcium channels: functional coupling in supersensitivity to angiotensin II in diabetic rats.
    Arun KH, Kaul CL, Ramarao P.
    Cardiovasc Res; 2005 Feb 01; 65(2):374-86. PubMed ID: 15639476
    [Abstract] [Full Text] [Related]

  • 16. Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries.
    Ghisdal P, Vandenberg G, Morel N.
    J Physiol; 2003 Sep 15; 551(Pt 3):855-67. PubMed ID: 12853654
    [Abstract] [Full Text] [Related]

  • 17. Coupling between [arginine8]-vasopressin-activated increases in protein tyrosine phosphorylation and cellular calcium in A7r5 aortic smooth muscle cells.
    Kaplan N, Di Salvo J.
    Arch Biochem Biophys; 1996 Feb 15; 326(2):271-80. PubMed ID: 8611034
    [Abstract] [Full Text] [Related]

  • 18. Agrin signaling in cortical neurons is mediated by a tyrosine kinase-dependent increase in intracellular Ca2+ that engages both CaMKII and MAPK signal pathways.
    Hilgenberg LG, Smith MA.
    J Neurobiol; 2004 Dec 15; 61(3):289-300. PubMed ID: 15389602
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.