These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
60 related items for PubMed ID: 1188150
1. Role of free calcium and ATP in calcium release from cardiac sarcoplasmic reticulum fragments. Besch HR, Watanabe AM. Recent Adv Stud Cardiac Struct Metab; 1975; 5():143-9. PubMed ID: 1188150 [Abstract] [Full Text] [Related]
2. Characterization of Ca2+ release from the cardiac sarcoplasmic reticulum. Dhalla NS, Sulakhe PV, Lamers JM, Ganguly PK. Gen Physiol Biophys; 1983 Oct; 2(5):339-51. PubMed ID: 6236129 [Abstract] [Full Text] [Related]
3. Effects of adenine nucleotides on calcium binding by rat heart sarcoplasmic reticulum. Penpargkul S. Cardiovasc Res; 1979 May; 13(5):243-53. PubMed ID: 157812 [Abstract] [Full Text] [Related]
4. Phosphoprotein formation and ADP-ATP exchange of cardiac sarcoplasmic reticulum. Suko J, Hasselbach W. Recent Adv Stud Cardiac Struct Metab; 1975 May; 5():117-23. PubMed ID: 1188148 [Abstract] [Full Text] [Related]
5. Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources. Kuum M, Kaasik A, Joubert F, Ventura-Clapier R, Veksler V. Cardiovasc Res; 2009 Jul 01; 83(1):89-96. PubMed ID: 19389722 [Abstract] [Full Text] [Related]
6. Effects of inorganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles. Xiang JZ, Kentish JC. Cardiovasc Res; 1995 Mar 01; 29(3):391-400. PubMed ID: 7781013 [Abstract] [Full Text] [Related]
7. Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum. Zimányi I, Pessah IN. J Pharmacol Exp Ther; 1991 Mar 01; 256(3):938-46. PubMed ID: 1848635 [Abstract] [Full Text] [Related]
8. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Suko J, Hasselbach W. Eur J Biochem; 1976 Apr 15; 64(1):123-30. PubMed ID: 6267 [Abstract] [Full Text] [Related]
9. A continuous spectrophotometric assay for simultaneous measurement of calcium uptake and ATP hydrolysis in sarcoplasmic reticulum. Karon BS, Nissen ER, Voss J, Thomas DD. Anal Biochem; 1995 May 20; 227(2):328-33. PubMed ID: 7573954 [Abstract] [Full Text] [Related]
10. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy. von Germar F, Barth A, Mäntele W. Biophys J; 2000 Mar 20; 78(3):1531-40. PubMed ID: 10692337 [Abstract] [Full Text] [Related]
11. ATP-dependent effects of halothane on SR Ca2+ regulation in permeabilized atrial myocytes. Yang Z, Harrison SM, Steele DS. Cardiovasc Res; 2005 Jan 01; 65(1):167-76. PubMed ID: 15621044 [Abstract] [Full Text] [Related]
16. Depolarization-induced calcium release from sarcoplasmic reticulum fragments. II. Release of calcium incorporated with ATP. Kasai M, Miyamoto. J Biochem; 1976 May 01; 79(5):1067-76. PubMed ID: 8435 [Abstract] [Full Text] [Related]
17. Phasic components of calcium binding and release by canine cardiac relaxing system (sarcoplasmic reticulum fragments). Entman ML, Bornet EP, Schwartz A. J Mol Cell Cardiol; 1972 Apr 01; 4(2):155-69. PubMed ID: 5027350 [No Abstract] [Full Text] [Related]
18. Spontaneous calcium release from sarcoplasmic reticulum. A re-examination. Entman ML, van Winkle WB, Bornet E, Tate C. Biochim Biophys Acta; 1979 Mar 08; 551(2):382-8. PubMed ID: 420841 [Abstract] [Full Text] [Related]