These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 118877

  • 1. Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles.
    Letellier L, Shechter E.
    Eur J Biochem; 1979 Dec 17; 102(2):441-7. PubMed ID: 118877
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P, Krämer R, Unden G.
    Eur J Biochem; 1994 Jun 01; 222(2):605-14. PubMed ID: 8020497
    [Abstract] [Full Text] [Related]

  • 5. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW, Patel L, Rottenberg H, Kaback HR.
    Biochemistry; 1980 Jan 08; 19(1):1-9. PubMed ID: 6986161
    [Abstract] [Full Text] [Related]

  • 6. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles.
    Ramos S, Kaback HR.
    Biochemistry; 1977 Mar 08; 16(5):854-9. PubMed ID: 14665
    [Abstract] [Full Text] [Related]

  • 7. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient.
    LeBlanc G, Rimon G, Kaback HR.
    Biochemistry; 1980 May 27; 19(11):2522-8. PubMed ID: 6992861
    [Abstract] [Full Text] [Related]

  • 8. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM, Roberts RR, Bhattacharyya P.
    Membr Biochem; 1978 May 27; 1(1-2):73-88. PubMed ID: 116111
    [Abstract] [Full Text] [Related]

  • 9. Effect of inhibitors on the substrate-dependent quenching of 9-aminoacridine fluorescence in inside-out membrane vesicles of Escherichia coli.
    Singh AP, Bragg PD.
    Eur J Biochem; 1976 Aug 01; 67(1):177-86. PubMed ID: 9275
    [Abstract] [Full Text] [Related]

  • 10. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source.
    Chen LI, Chen CH.
    Arch Biochem Biophys; 1986 Dec 01; 251(2):606-15. PubMed ID: 3026249
    [Abstract] [Full Text] [Related]

  • 11. The electrochemical proton gradient in Escherichia coli membrane vesicles.
    Ramos S, Kaback HR.
    Biochemistry; 1977 Mar 08; 16(5):848-54. PubMed ID: 14664
    [Abstract] [Full Text] [Related]

  • 12. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S, Schuldiner S, Kaback HR.
    Proc Natl Acad Sci U S A; 1976 Jun 08; 73(6):1892-6. PubMed ID: 6961
    [Abstract] [Full Text] [Related]

  • 13. Measurements of membrane potentials in Escherichia coli K-12 inner membrane vesicles with the safranine method.
    Huttunen MT, Akerman KE.
    Biochim Biophys Acta; 1980 Apr 10; 597(2):274-84. PubMed ID: 6989399
    [Abstract] [Full Text] [Related]

  • 14. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli.
    Ten Brink B, Konings WN.
    Eur J Biochem; 1980 Oct 10; 111(1):59-66. PubMed ID: 7002561
    [Abstract] [Full Text] [Related]

  • 15. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K, Hirata H, Harold FM.
    J Biol Chem; 1975 Feb 25; 250(4):1405-12. PubMed ID: 1089658
    [Abstract] [Full Text] [Related]

  • 16. Relationships between the Na+-H+ antiport activity and the components of the electrochemical proton gradient in Escherichia coli membrane vesicles.
    Bassilana M, Damiano E, Leblanc G.
    Biochemistry; 1984 Feb 28; 23(5):1015-22. PubMed ID: 6324854
    [Abstract] [Full Text] [Related]

  • 17. The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells.
    Ahmed S, Booth IR.
    Biochem J; 1983 Apr 15; 212(1):105-12. PubMed ID: 6307285
    [Abstract] [Full Text] [Related]

  • 18. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements.
    Kragh-Hansen U, Jørgensen KE, Sheikh MI.
    Biochem J; 1982 Nov 15; 208(2):359-68. PubMed ID: 7159404
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium.
    Michel TA, Macy JM.
    J Bacteriol; 1990 Mar 15; 172(3):1430-5. PubMed ID: 2307654
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.