These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 11896980
21. PDGF and TGF-alpha act synergistically to improve wound healing in the genetically diabetic mouse. Brown RL, Breeden MP, Greenhalgh DG. J Surg Res; 1994 Jun; 56(6):562-70. PubMed ID: 8015312 [Abstract] [Full Text] [Related]
23. PDGF-BB induced chemotaxis is impaired in aged capillary endothelial cells. Phillips GD, Stone AM. Mech Ageing Dev; 1994 Mar; 73(3):189-96. PubMed ID: 8057689 [Abstract] [Full Text] [Related]
24. Preliminary observations on expression of transforming growth factors beta1 and beta3 in equine full-thickness skin wounds healing normally or with exuberant granulation tissue. Theoret CL, Barber SM, Moyana TN, Gordon JR. Vet Surg; 2002 Mar; 31(3):266-73. PubMed ID: 11994855 [Abstract] [Full Text] [Related]
25. Human plasma fibronectin potentiates the mitogenic activity of platelet-derived growth factor and complements its wound healing effects. Larivière B, Rouleau M, Picard S, Beaulieu AD. Wound Repair Regen; 2003 Mar; 11(1):79-89. PubMed ID: 12581430 [Abstract] [Full Text] [Related]
26. Preclinical promise of becaplermin (rhPDGF-BB) in wound healing. LeGrand EK. Am J Surg; 1998 Aug; 176(2A Suppl):48S-54S. PubMed ID: 9777972 [Abstract] [Full Text] [Related]
27. Differential effects of platelet-derived growth factor BB in accelerating wound healing in aged versus young animals: the impact of tissue hypoxia. Wu L, Brucker M, Gruskin E, Roth SI, Mustoe TA. Plast Reconstr Surg; 1997 Mar; 99(3):815-22; discussion 823-4. PubMed ID: 9047202 [Abstract] [Full Text] [Related]
28. Wound epithelialization deficits in the transforming growth factor-alpha knockout mouse. Kim I, Mogford JE, Chao JD, Mustoe TA. Wound Repair Regen; 2001 Mar; 9(5):386-90. PubMed ID: 11896982 [Abstract] [Full Text] [Related]
29. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, Ogawa S, Ohshima T. J Clin Invest; 2001 Jul; 108(1):41-50. PubMed ID: 11435456 [Abstract] [Full Text] [Related]
30. Dermal wound healing properties of redox-active grape seed proanthocyanidins. Khanna S, Venojarvi M, Roy S, Sharma N, Trikha P, Bagchi D, Bagchi M, Sen CK. Free Radic Biol Med; 2002 Oct 15; 33(8):1089-96. PubMed ID: 12374620 [Abstract] [Full Text] [Related]
31. Inhibition of inducible nitric oxide synthase results in reductions in wound vascular endothelial growth factor expression, granulation tissue formation, and local perfusion. Howdieshell TR, Webb WL, Sathyanarayana, McNeil PL. Surgery; 2003 May 15; 133(5):528-37. PubMed ID: 12773981 [Abstract] [Full Text] [Related]
34. Time course analysis of hypoxia, granulation tissue and blood vessel growth, and remodeling in healing rat cutaneous incisional primary intention wounds. Lokmic Z, Darby IA, Thompson EW, Mitchell GM. Wound Repair Regen; 2006 May 15; 14(3):277-88. PubMed ID: 16808806 [Abstract] [Full Text] [Related]
35. Static Langer's line and wound contraction rates according to anatomical regions in a porcine model. Kwak M, Son D, Kim J, Han K. Wound Repair Regen; 2014 May 15; 22(5):678-82. PubMed ID: 24942927 [Abstract] [Full Text] [Related]