These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 11897852

  • 1. Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat.
    Prescott SA, De Koninck Y.
    J Physiol; 2002 Mar 15; 539(Pt 3):817-36. PubMed ID: 11897852
    [Abstract] [Full Text] [Related]

  • 2. Integration time in a subset of spinal lamina I neurons is lengthened by sodium and calcium currents acting synergistically to prolong subthreshold depolarization.
    Prescott SA, De Koninck Y.
    J Neurosci; 2005 May 11; 25(19):4743-54. PubMed ID: 15888650
    [Abstract] [Full Text] [Related]

  • 3. Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro.
    Ruscheweyh R, Sandkühler J.
    J Physiol; 2002 May 15; 541(Pt 1):231-44. PubMed ID: 12015432
    [Abstract] [Full Text] [Related]

  • 4. Morphology and physiology of lamina I neurons of the caudal part of the trigeminal nucleus.
    Sedlacek M, Horak M, Vyklický L.
    Neuroscience; 2007 Jun 29; 147(2):325-33. PubMed ID: 17543462
    [Abstract] [Full Text] [Related]

  • 5. Relationship of membrane properties, spike burst responses, laminar location, and functional class of dorsal horn neurons recorded in vitro.
    Dougherty PM, Chen J.
    J Neurophysiol; 2016 Sep 01; 116(3):1137-51. PubMed ID: 27334950
    [Abstract] [Full Text] [Related]

  • 6. Synaptic input of rat spinal lamina I projection and unidentified neurones in vitro.
    Dahlhaus A, Ruscheweyh R, Sandkühler J.
    J Physiol; 2005 Jul 15; 566(Pt 2):355-68. PubMed ID: 15878938
    [Abstract] [Full Text] [Related]

  • 7. Membrane properties of physiologically classified rat dorsal horn neurons in vitro: correlation with cutaneous sensory afferent input.
    Lopez-Garcia JA, King AE.
    Eur J Neurosci; 1994 Jun 01; 6(6):998-1007. PubMed ID: 7952286
    [Abstract] [Full Text] [Related]

  • 8. Electrophysiological properties of lumbosacral preganglionic neurons in the neonatal rat spinal cord.
    Miura A, Kawatani M, Araki I, de Groat WC.
    Brain Res; 2000 Jul 28; 872(1-2):54-63. PubMed ID: 10924675
    [Abstract] [Full Text] [Related]

  • 9. Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro.
    Ruscheweyh R, Ikeda H, Heinke B, Sandkühler J.
    J Physiol; 2004 Mar 01; 555(Pt 2):527-43. PubMed ID: 14694142
    [Abstract] [Full Text] [Related]

  • 10. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex.
    Zhu JJ, Connors BW.
    J Neurophysiol; 1999 Mar 01; 81(3):1171-83. PubMed ID: 10085344
    [Abstract] [Full Text] [Related]

  • 11. ATP P2x receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats.
    Li P, Calejesan AA, Zhuo M.
    J Neurophysiol; 1998 Dec 01; 80(6):3356-60. PubMed ID: 9862932
    [Abstract] [Full Text] [Related]

  • 12. Dorsal column nuclei neurons recorded in a brain stem-spinal cord preparation: characteristics and their responses to dorsal root stimulation.
    Deuchars SA, Trippenbach T, Spyer KM.
    J Neurophysiol; 2000 Sep 01; 84(3):1361-8. PubMed ID: 10980009
    [Abstract] [Full Text] [Related]

  • 13. Inhibition of glutamatergic synaptic input to spinal lamina II(o) neurons by presynaptic alpha(2)-adrenergic receptors.
    Pan YZ, Li DP, Pan HL.
    J Neurophysiol; 2002 Apr 01; 87(4):1938-47. PubMed ID: 11929913
    [Abstract] [Full Text] [Related]

  • 14. Synaptic transmission of chaotic spike trains between primary afferent fiber and spinal dorsal horn neuron in the rat.
    Wan YH, Jian Z, Wen ZH, Wang YY, Han S, Duan YB, Xing JL, Zhu JL, Hu SJ.
    Neuroscience; 2004 Apr 01; 125(4):1051-60. PubMed ID: 15120864
    [Abstract] [Full Text] [Related]

  • 15. Membrane properties of deep dorsal horn neurons from neonatal rat spinal cord in vitro.
    Hochman S, Garraway SM, Pockett S.
    Brain Res; 1997 Sep 05; 767(2):214-9. PubMed ID: 9367250
    [Abstract] [Full Text] [Related]

  • 16. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.
    Thomson LM, Zeng J, Terman GW.
    Neuroscience; 2006 Sep 01; 141(3):1489-501. PubMed ID: 16750886
    [Abstract] [Full Text] [Related]

  • 17. Temporal and spatial dynamics of peripheral afferent-evoked activity in the dorsal horn recorded in rat spinal cord slices.
    Yu F, Zhao ZY, He T, Yu YQ, Li Z, Chen J.
    Brain Res Bull; 2017 May 01; 131():183-191. PubMed ID: 28458040
    [Abstract] [Full Text] [Related]

  • 18. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S, Urban L.
    J Neurophysiol; 1994 Jan 01; 71(1):216-28. PubMed ID: 7908954
    [Abstract] [Full Text] [Related]

  • 19. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM, Traub RD, Jefferys JG.
    J Neurophysiol; 1998 Jul 01; 80(1):162-71. PubMed ID: 9658038
    [Abstract] [Full Text] [Related]

  • 20. Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord.
    Baba H, Doubell TP, Moore KA, Woolf CJ.
    J Neurophysiol; 2000 Feb 01; 83(2):955-62. PubMed ID: 10669507
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.