These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 11906530

  • 21. The Common and Distinct Orientation Adaptation Effect at Pinwheel Centers in Areas 21a and 17 of Cats.
    Meng J, Li Z, Li H, Zhu J, Yu H.
    Neuroscience; 2018 May 21; 379():77-92. PubMed ID: 29550335
    [Abstract] [Full Text] [Related]

  • 22. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.
    Jirmann KU, Pernberg J, Eysel UT.
    Exp Brain Res; 2009 Jan 21; 192(3):369-78. PubMed ID: 18841356
    [Abstract] [Full Text] [Related]

  • 23. Anesthesia and tangential package of neurons sensitive to cruciform figures in the cat striate cortex.
    Shevelev IA, Bondar' IV, Eysel UT, Kisvarday ZF, Buzas P, Ivanov RS, Saltykov KA.
    Dokl Biol Sci; 2005 Jan 21; 402():179-82. PubMed ID: 16121937
    [No Abstract] [Full Text] [Related]

  • 24. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex.
    Crair MC, Ruthazer ES, Gillespie DC, Stryker MP.
    J Neurophysiol; 1997 Jun 21; 77(6):3381-5. PubMed ID: 9212282
    [Abstract] [Full Text] [Related]

  • 25. Pinwheel patterns give rise to the direction selectivity of complex cells in the primary visual cortex.
    Yao X, Jin L, Hu H.
    Brain Res; 2007 Sep 19; 1170():140-6. PubMed ID: 17719018
    [Abstract] [Full Text] [Related]

  • 26. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats.
    Hua T, Li G, Tang C, Wang Z, Chang S.
    Neurosci Lett; 2009 Feb 13; 451(1):25-8. PubMed ID: 19121368
    [Abstract] [Full Text] [Related]

  • 27. A tonic hyperpolarization underlying contrast adaptation in cat visual cortex.
    Carandini M, Ferster D.
    Science; 1997 May 09; 276(5314):949-52. PubMed ID: 9139658
    [Abstract] [Full Text] [Related]

  • 28. Interactions between higher and lower visual areas improve shape selectivity of higher level neurons-explaining crowding phenomena.
    Jehee JF, Roelfsema PR, Deco G, Murre JM, Lamme VA.
    Brain Res; 2007 Jul 09; 1157():167-76. PubMed ID: 17540349
    [Abstract] [Full Text] [Related]

  • 29. Cross-orientation suppression: monoptic and dichoptic mechanisms are different.
    Li B, Peterson MR, Thompson JK, Duong T, Freeman RD.
    J Neurophysiol; 2005 Aug 09; 94(2):1645-50. PubMed ID: 15843483
    [Abstract] [Full Text] [Related]

  • 30. Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex.
    Lampl I, Anderson JS, Gillespie DC, Ferster D.
    Neuron; 2001 Apr 09; 30(1):263-74. PubMed ID: 11343660
    [Abstract] [Full Text] [Related]

  • 31. Invariant computations in local cortical networks with balanced excitation and inhibition.
    Mariño J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M.
    Nat Neurosci; 2005 Feb 09; 8(2):194-201. PubMed ID: 15665876
    [Abstract] [Full Text] [Related]

  • 32. Feedback decoding of spatially structured population activity in cortical maps.
    Swindale NV.
    Neural Comput; 2008 Jan 09; 20(1):176-204. PubMed ID: 18045005
    [Abstract] [Full Text] [Related]

  • 33. Adaptation-induced plasticity of orientation tuning in adult visual cortex.
    Dragoi V, Sharma J, Sur M.
    Neuron; 2000 Oct 09; 28(1):287-98. PubMed ID: 11087001
    [Abstract] [Full Text] [Related]

  • 34. Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings.
    Shou T, Li X, Zhou Y, Hu B.
    Vis Neurosci; 1996 Oct 09; 13(4):605-13. PubMed ID: 8870219
    [Abstract] [Full Text] [Related]

  • 35. Pattern adaptation and cross-orientation interactions in the primary visual cortex.
    Carandini M, Movshon JA, Ferster D.
    Neuropharmacology; 1998 Oct 09; 37(4-5):501-11. PubMed ID: 9704991
    [Abstract] [Full Text] [Related]

  • 36. A Model for the Origin of Motion Direction Selectivity in Visual Cortex.
    Freeman AW.
    J Neurosci; 2021 Jan 06; 41(1):89-102. PubMed ID: 33203740
    [Abstract] [Full Text] [Related]

  • 37. Spatial frequency-specific contrast adaptation originates in the primary visual cortex.
    Duong T, Freeman RD.
    J Neurophysiol; 2007 Jul 06; 98(1):187-95. PubMed ID: 17428911
    [Abstract] [Full Text] [Related]

  • 38. Highly ordered arrangement of single neurons in orientation pinwheels.
    Ohki K, Chung S, Kara P, Hübener M, Bonhoeffer T, Reid RC.
    Nature; 2006 Aug 24; 442(7105):925-8. PubMed ID: 16906137
    [Abstract] [Full Text] [Related]

  • 39. Spatial frequency maps in cat visual cortex.
    Issa NP, Trepel C, Stryker MP.
    J Neurosci; 2000 Nov 15; 20(22):8504-14. PubMed ID: 11069958
    [Abstract] [Full Text] [Related]

  • 40. Strong recurrent networks compute the orientation tuning of surround modulation in the primate primary visual cortex.
    Shushruth S, Mangapathy P, Ichida JM, Bressloff PC, Schwabe L, Angelucci A.
    J Neurosci; 2012 Jan 04; 32(1):308-21. PubMed ID: 22219292
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.