These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


291 related items for PubMed ID: 11913392

  • 1. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ, Houk KN.
    J Comput Chem; 2002 Jan 15; 23(1):84-95. PubMed ID: 11913392
    [Abstract] [Full Text] [Related]

  • 2. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O, Vassylyev DG, Tanaka F, Morikawa K, Fujii I.
    J Mol Biol; 1998 Aug 21; 281(3):501-11. PubMed ID: 9698565
    [Abstract] [Full Text] [Related]

  • 3. Direct hydroxide attack is a plausible mechanism for amidase antibody 43C9.
    Chong LT, Bandyopadhyay P, Scanlan TS, Kuntz ID, Kollman PA.
    J Comput Chem; 2003 Sep 21; 24(12):1371-7. PubMed ID: 12868101
    [Abstract] [Full Text] [Related]

  • 4. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M, Ito N, Tsumuraya T, Suzuki K, Sakakura M, Fujii I.
    J Mol Biol; 2007 May 25; 369(1):198-209. PubMed ID: 17428500
    [Abstract] [Full Text] [Related]

  • 5. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM, Olender EH, Arvai AS, Koike CK, Canestrelli IL, Stewart JD, Benkovic SJ, Getzoff ED, Roberts VA.
    J Mol Biol; 1999 Aug 13; 291(2):329-45. PubMed ID: 10438624
    [Abstract] [Full Text] [Related]

  • 6. Antibody-catalyzed oxy-cope rearrangement: mechanism and origins of catalysis and stereoselectivity from DFT quantum mechanics and flexible docking.
    Black KA, Leach AG, Kalani MY, Houk KN.
    J Am Chem Soc; 2004 Aug 11; 126(31):9695-708. PubMed ID: 15291573
    [Abstract] [Full Text] [Related]

  • 7. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD, Schultz PG.
    J Mol Biol; 1998 Jan 09; 275(1):95-111. PubMed ID: 9451442
    [Abstract] [Full Text] [Related]

  • 8. Structural basis of the transition-state stabilization in antibody-catalyzed hydrolysis.
    Sakakura M, Takahashi H, Shimba N, Fujii I, Shimada I.
    J Mol Biol; 2007 Mar 16; 367(1):133-47. PubMed ID: 17239396
    [Abstract] [Full Text] [Related]

  • 9. Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10.
    Larsen NA, de Prada P, Deng SX, Mittal A, Braskett M, Zhu X, Wilson IA, Landry DW.
    Biochemistry; 2004 Jun 29; 43(25):8067-76. PubMed ID: 15209502
    [Abstract] [Full Text] [Related]

  • 10. Experimental determination of the absolute enantioselectivity of an antibody-catalyzed Diels-Alder reaction and theoretical explorations of the origins of stereoselectivity.
    Cannizzaro CE, Ashley JA, Janda KD, Houk KN.
    J Am Chem Soc; 2003 Mar 05; 125(9):2489-506. PubMed ID: 12603137
    [Abstract] [Full Text] [Related]

  • 11. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K, Zhou B, Houk KN, Lerner RA, Shevlin CG, Wilson IA.
    Biochemistry; 1999 Jun 01; 38(22):7062-74. PubMed ID: 10353817
    [Abstract] [Full Text] [Related]

  • 12. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H, Hara T, Tanimura R, Fukuyama S, Cagnon C, Kohara A, Fujii I.
    J Mol Biol; 1997 Apr 18; 267(5):1247-57. PubMed ID: 9150409
    [Abstract] [Full Text] [Related]

  • 13. Theoretical investigation of the origins of catalysis of a retro-Diels-Alder reaction by antibody 10F11.
    Leach AG, Houk KN, Reymond JL.
    J Org Chem; 2004 May 28; 69(11):3683-92. PubMed ID: 15152997
    [Abstract] [Full Text] [Related]

  • 14. Catalysis on the coastline: theozyme, molecular dynamics, and free energy perturbation analysis of antibody 21D8 catalysis of the decarboxylation of 5-nitro-3-carboxybenzisoxazole.
    Ujaque G, Tantillo DJ, Hu Y, Houk KN, Hotta K, Hilvert D.
    J Comput Chem; 2003 Jan 15; 24(1):98-110. PubMed ID: 12483679
    [Abstract] [Full Text] [Related]

  • 15. Structural basis for a disfavored elimination reaction in catalytic antibody 1D4.
    Larsen NA, Heine A, Crane L, Cravatt BF, Lerner RA, Wilson IA.
    J Mol Biol; 2001 Nov 16; 314(1):93-102. PubMed ID: 11724535
    [Abstract] [Full Text] [Related]

  • 16. Crystal structure of a catalytic antibody with a serine protease active site.
    Zhou GW, Guo J, Huang W, Fletterick RJ, Scanlan TS.
    Science; 1994 Aug 19; 265(5175):1059-64. PubMed ID: 8066444
    [Abstract] [Full Text] [Related]

  • 17. Mechanistic analysis of the phosphonate transition-state analogue-derived catalytic and non-catalytic antibody.
    Nishi Y, Yamamoto N, Shimazaki K, Takahashi-Ando N, Kakinuma H, Jialin S, Ruzheinikov SN, Muranova TA, Rice DW, Kajihara Y.
    J Biochem; 2007 Oct 19; 142(4):421-33. PubMed ID: 17981825
    [Abstract] [Full Text] [Related]

  • 18. Crossreactivity, efficiency and catalytic specificity of an esterase-like antibody.
    Gigant B, Charbonnier JB, Eshhar Z, Green BS, Knossow M.
    J Mol Biol; 1998 Dec 04; 284(3):741-50. PubMed ID: 9826512
    [Abstract] [Full Text] [Related]

  • 19. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G, Liu J.
    Acc Chem Res; 2012 Feb 21; 45(2):239-47. PubMed ID: 21967389
    [Abstract] [Full Text] [Related]

  • 20. Substrate-assisted antibody catalysis.
    Deng S, Bharat N, de Prada P, Landry DW.
    Org Biomol Chem; 2004 Feb 07; 2(3):288-90. PubMed ID: 14747854
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.