These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
331 related items for PubMed ID: 11914089
1. Comparative structure analysis of tyrosine and valine residues in unprocessed silk fibroin (silk I) and in the processed silk fiber (silk II) from Bombyx mori using solid-state (13)C,(15)N, and (2)H NMR. Asakura T, Sugino R, Yao J, Takashima H, Kishore R. Biochemistry; 2002 Apr 02; 41(13):4415-24. PubMed ID: 11914089 [Abstract] [Full Text] [Related]
2. Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides: high-resolution 13C cross-polarization/magic-angle spinning NMR study. Asakura T, Ohgo K, Ishida T, Taddei P, Monti P, Kishore R. Biomacromolecules; 2005 Apr 02; 6(1):468-74. PubMed ID: 15638554 [Abstract] [Full Text] [Related]
3. Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Asakura T, Suita K, Kameda T, Afonin S, Ulrich AS. Magn Reson Chem; 2004 Feb 02; 42(2):258-66. PubMed ID: 14745806 [Abstract] [Full Text] [Related]
4. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and (13)C cross-polarization/magic angle spinning NMR. Asakura T, Yamane T, Nakazawa Y, Kameda T, Ando K. Biopolymers; 2001 Apr 15; 58(5):521-5. PubMed ID: 11241223 [Abstract] [Full Text] [Related]
5. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR. Asakura T, Isobe K, Kametani S, Ukpebor OT, Silverstein MC, Boutis GS. Acta Biomater; 2017 Mar 01; 50():322-333. PubMed ID: 28065870 [Abstract] [Full Text] [Related]
6. 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Asakura T, Yao J. Protein Sci; 2002 Nov 01; 11(11):2706-13. PubMed ID: 12381852 [Abstract] [Full Text] [Related]
7. Structural analysis of silk with 13C NMR chemical shift contour plots. Asakura T, Iwadate M, Demura M, Williamson MP. Int J Biol Macromol; 1999 Nov 01; 24(2-3):167-71. PubMed ID: 10342761 [Abstract] [Full Text] [Related]
8. Structural analysis of Bombyx mori silk fibroin peptides with formic acid treatment using high-resolution solid-state 13C NMR spectroscopy. Yao J, Ohgo K, Sugino R, Kishore R, Asakura T. Biomacromolecules; 2004 Nov 01; 5(5):1763-9. PubMed ID: 15360285 [Abstract] [Full Text] [Related]
9. Structure of silk I (Bombyx mori silk fibroin before spinning) in the dry and hydrated states studied using 13C solid-state NMR spectroscopy. Asakura T, Naito A. Int J Biol Macromol; 2022 Sep 01; 216():282-290. PubMed ID: 35788005 [Abstract] [Full Text] [Related]
10. Structures of Bombyx mori and Samia cynthia ricini silk fibroins studied with solid-state NMR. Yao J, Nakazawa Y, Asakura T. Biomacromolecules; 2004 Sep 01; 5(3):680-8. PubMed ID: 15132647 [Abstract] [Full Text] [Related]
11. The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scattering. Asakura T, Sugino R, Okumura T, Nakazawa Y. Protein Sci; 2002 Aug 01; 11(8):1873-7. PubMed ID: 12142441 [Abstract] [Full Text] [Related]
12. NMR study of the structures of repeated sequences, GAGXGA (X = S, Y, V), in Bombyx mori liquid silk. Suzuki Y, Yamazaki T, Aoki A, Shindo H, Asakura T. Biomacromolecules; 2014 Jan 13; 15(1):104-12. PubMed ID: 24266784 [Abstract] [Full Text] [Related]
13. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by (13)C CP/MAS NMR and ¹H DQMAS NMR. Asakura T, Endo M, Hirayama M, Arai H, Aoki A, Tasei Y. Int J Mol Sci; 2016 Sep 09; 17(9):. PubMed ID: 27618034 [Abstract] [Full Text] [Related]
14. Acetylation of Bombyx mori silk fibroin and their characterization in the dry and hydrated states using 13C solid-state NMR. Asakura T, Matsuda H, Naito A. Int J Biol Macromol; 2020 Jul 15; 155():1410-1419. PubMed ID: 31734374 [Abstract] [Full Text] [Related]
15. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods. Wu X, Wu X, Shao M, Yang B. Int J Biol Macromol; 2017 Sep 15; 102():1202-1210. PubMed ID: 28487194 [Abstract] [Full Text] [Related]
16. Chain-folded lamellar structure and dynamics of the crystalline fraction of Bombyx mori silk fibroin and of (Ala-Gly-Ser-Gly-Ala-Gly)n model peptides. Asakura T, Ogawa T, Naito A, Williamson MP. Int J Biol Macromol; 2020 Dec 01; 164():3974-3983. PubMed ID: 32882279 [Abstract] [Full Text] [Related]
17. A method for studying the structure of uniaxially aligned biopolymers using solid state 15N-nmr: application to Bombyx mori silk fibroin fibers. Nicholson LK, Asakura T, Demura M, Cross TA. Biopolymers; 1993 May 01; 33(5):847-61. PubMed ID: 8343580 [Abstract] [Full Text] [Related]
18. Structure of Silk I (Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix. Asakura T. Molecules; 2021 Jun 17; 26(12):. PubMed ID: 34204550 [Abstract] [Full Text] [Related]
19. Vibrational infrared conformational studies of model peptides representing the semicrystalline domains of Bombyx mori silk fibroin. Taddei P, Monti P. Biopolymers; 2005 Aug 05; 78(5):249-58. PubMed ID: 15800959 [Abstract] [Full Text] [Related]
20. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Zhao C, Yao J, Masuda H, Kishore R, Asakura T. Biopolymers; 2003 Jun 05; 69(2):253-9. PubMed ID: 12767126 [Abstract] [Full Text] [Related] Page: [Next] [New Search]