These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
332 related items for PubMed ID: 11916186
1. In vitro studies indicate that acid catalysed generation of N-nitrosocompounds from dietary nitrate will be maximal at the gastro-oesophageal junction and cardia. Moriya A, Grant J, Mowat C, Williams C, Carswell A, Preston T, Anderson S, Iijima K, McColl KE. Scand J Gastroenterol; 2002 Mar; 37(3):253-61. PubMed ID: 11916186 [Abstract] [Full Text] [Related]
2. Conditions for acid catalysed luminal nitrosation are maximal at the gastric cardia. Suzuki H, Iijima K, Moriya A, McElroy K, Scobie G, Fyfe V, McColl KE. Gut; 2003 Aug; 52(8):1095-101. PubMed ID: 12865265 [Abstract] [Full Text] [Related]
3. Studies of nitric oxide generation from salivary nitrite in human gastric juice. Iijima K, Fyfe V, McColl KE. Scand J Gastroenterol; 2003 Mar; 38(3):246-52. PubMed ID: 12737438 [Abstract] [Full Text] [Related]
4. Novel mechanism of nitrosative stress from dietary nitrate with relevance to gastro-oesophageal junction cancers. Iijima K, Grant J, McElroy K, Fyfe V, Preston T, McColl KE. Carcinogenesis; 2003 Dec; 24(12):1951-60. PubMed ID: 12970071 [Abstract] [Full Text] [Related]
6. Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction. Iijima K, Henry E, Moriya A, Wirz A, Kelman AW, McColl KE. Gastroenterology; 2002 May; 122(5):1248-57. PubMed ID: 11984511 [Abstract] [Full Text] [Related]
7. Studies in gastric carcinogenesis. V. The effects of ascorbic acid on N-nitroso compound formation in human gastric juice in vivo and in vitro. Kyrtopoulos SA, Pignatelli B, Karkanias G, Golematis B, Esteve J. Carcinogenesis; 1991 Aug; 12(8):1371-6. PubMed ID: 1860156 [Abstract] [Full Text] [Related]
8. Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation. Combet E, Paterson S, Iijima K, Winter J, Mullen W, Crozier A, Preston T, McColl KE. Gut; 2007 Dec; 56(12):1678-84. PubMed ID: 17785370 [Abstract] [Full Text] [Related]
10. Enhancement of iron(II)-dependent reduction of nitrite to nitric oxide by thiocyanate and accumulation of iron(II)/thiocyanate/nitric oxide complex under conditions simulating the mixture of saliva and gastric juice. Takahama U, Hirota S. Chem Res Toxicol; 2012 Jan 13; 25(1):207-15. PubMed ID: 22145785 [Abstract] [Full Text] [Related]
11. Alterations in intragastric nitrite and vitamin C levels during acid inhibitory therapy. Mowat C, McColl KE. Best Pract Res Clin Gastroenterol; 2001 Jun 13; 15(3):523-37. PubMed ID: 11403544 [Abstract] [Full Text] [Related]
12. Diffusion of cytotoxic concentrations of nitric oxide generated luminally at the gastro-oesophageal junction of rats. Asanuma K, Iijima K, Sugata H, Ohara S, Shimosegawa T, Yoshimura T. Gut; 2005 Aug 13; 54(8):1072-7. PubMed ID: 15860569 [Abstract] [Full Text] [Related]
13. Levels of nitrite, nitrate, N-nitroso compounds, ascorbic acid and total bile acids in gastric juice of patients with and without precancerous conditions of the stomach. Sobala GM, Pignatelli B, Schorah CJ, Bartsch H, Sanderson M, Dixon MF, Shires S, King RF, Axon AT. Carcinogenesis; 1991 Feb 13; 12(2):193-8. PubMed ID: 1995184 [Abstract] [Full Text] [Related]
14. Validation of microdialysis probes for studying nitrosative chemistry within localized regions of the human upper gastrointestinal tract. Suzuki H, Moriya A, Iijima K, McElroy K, Fyfe VE, McColl KE. Scand J Gastroenterol; 2003 Aug 13; 38(8):856-63. PubMed ID: 12940440 [Abstract] [Full Text] [Related]
15. Gastric carditis: Is it a histological response to high concentrations of luminal nitric oxide? Iijima K, Shimosegawa T. World J Gastroenterol; 2006 Sep 28; 12(36):5767-71. PubMed ID: 17007040 [Abstract] [Full Text] [Related]
16. Intragastric formation and modulation of N-nitrosodimethylamine in a dynamic in vitro gastrointestinal model under human physiological conditions. Krul CA, Zeilmaker MJ, Schothorst RC, Havenaar R. Food Chem Toxicol; 2004 Jan 28; 42(1):51-63. PubMed ID: 14630130 [Abstract] [Full Text] [Related]
17. Salivary uric acid at the acidic pH of the stomach is the principal defense against nitrite-derived reactive species: sparing effects of chlorogenic acid and serum albumin. Pietraforte D, Castelli M, Metere A, Scorza G, Samoggia P, Menditto A, Minetti M. Free Radic Biol Med; 2006 Dec 15; 41(12):1753-63. PubMed ID: 17157178 [Abstract] [Full Text] [Related]
18. Dietary phenolic acids and ascorbic acid: Influence on acid-catalyzed nitrosative chemistry in the presence and absence of lipids. Combet E, El Mesmari A, Preston T, Crozier A, McColl KE. Free Radic Biol Med; 2010 Mar 15; 48(6):763-71. PubMed ID: 20026204 [Abstract] [Full Text] [Related]
19. Effects of the food additive sulfite on nitrite-dependent nitric oxide production under conditions simulating the mixture of saliva and gastric juice. Takahama U, Hirota S. J Agric Food Chem; 2012 Feb 01; 60(4):1102-12. PubMed ID: 22224438 [Abstract] [Full Text] [Related]
20. Quercetin-dependent reduction of salivary nitrite to nitric oxide under acidic conditions and interaction between quercetin and ascorbic acid during the reduction. Takahama U, Yamamoto A, Hirota S, Oniki T. J Agric Food Chem; 2003 Sep 24; 51(20):6014-20. PubMed ID: 13129310 [Abstract] [Full Text] [Related] Page: [Next] [New Search]