These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 11918801

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Melarsoprol- and pentamidine-resistant Trypanosoma brucei rhodesiense populations and their cross-resistance.
    Bernhard SC, Nerima B, Mäser P, Brun R.
    Int J Parasitol; 2007 Nov; 37(13):1443-8. PubMed ID: 17602691
    [Abstract] [Full Text] [Related]

  • 43. Multiple genetic mechanisms lead to loss of functional TbAT1 expression in drug-resistant trypanosomes.
    Stewart ML, Burchmore RJ, Clucas C, Hertz-Fowler C, Brooks K, Tait A, Macleod A, Turner CM, De Koning HP, Wong PE, Barrett MP.
    Eukaryot Cell; 2010 Feb; 9(2):336-43. PubMed ID: 19966032
    [Abstract] [Full Text] [Related]

  • 44. Chimerization at the AQP2-AQP3 locus is the genetic basis of melarsoprol-pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates.
    Graf FE, Baker N, Munday JC, de Koning HP, Horn D, Mäser P.
    Int J Parasitol Drugs Drug Resist; 2015 Aug; 5(2):65-8. PubMed ID: 26042196
    [Abstract] [Full Text] [Related]

  • 45. Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents.
    Augustyns K, Amssoms K, Yamani A, Rajan PK, Haemers A.
    Curr Pharm Des; 2001 Aug; 7(12):1117-41. PubMed ID: 11472257
    [Abstract] [Full Text] [Related]

  • 46. Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis.
    Nok AJ.
    Parasitol Res; 2003 May; 90(1):71-9. PubMed ID: 12743807
    [Abstract] [Full Text] [Related]

  • 47. Loss of the high-affinity pentamidine transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes.
    Bridges DJ, Gould MK, Nerima B, Mäser P, Burchmore RJ, de Koning HP.
    Mol Pharmacol; 2007 Apr; 71(4):1098-108. PubMed ID: 17234896
    [Abstract] [Full Text] [Related]

  • 48. The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.
    Ceylan S, Seidel V, Ziebart N, Berndt C, Dirdjaja N, Krauth-Siegel RL.
    J Biol Chem; 2010 Nov 05; 285(45):35224-37. PubMed ID: 20826822
    [Abstract] [Full Text] [Related]

  • 49. Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania.
    Haimeur A, Guimond C, Pilote S, Mukhopadhyay R, Rosen BP, Poulin R, Ouellette M.
    Mol Microbiol; 1999 Nov 05; 34(4):726-35. PubMed ID: 10564512
    [Abstract] [Full Text] [Related]

  • 50. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis.
    Heby O, Persson L, Rentala M.
    Amino Acids; 2007 Aug 05; 33(2):359-66. PubMed ID: 17610127
    [Abstract] [Full Text] [Related]

  • 51. Key proteins in the polyamine-trypanothione pathway as drug targets against Trypanosoma cruzi.
    Maya JD, Salas CO, Aguilera-Venegas B, Diaz MV, López-Muñoz R.
    Curr Med Chem; 2014 Aug 05; 21(15):1757-71. PubMed ID: 24251576
    [Abstract] [Full Text] [Related]

  • 52. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A, Krauth-Siegel RL.
    Curr Top Med Chem; 2002 Nov 05; 2(11):1239-59. PubMed ID: 12171583
    [Abstract] [Full Text] [Related]

  • 53. Arsenic and old taxa: subspeciation and drug sensitivity in Trypanosoma brucei.
    Dukes P.
    Trans R Soc Trop Med Hyg; 1984 Nov 05; 78(6):711-25. PubMed ID: 6241967
    [Abstract] [Full Text] [Related]

  • 54. Genetic variants of the TbAT1 adenosine transporter from African trypanosomes in relapse infections following melarsoprol therapy.
    Matovu E, Geiser F, Schneider V, Mäser P, Enyaru JC, Kaminsky R, Gallati S, Seebeck T.
    Mol Biochem Parasitol; 2001 Sep 28; 117(1):73-81. PubMed ID: 11551633
    [Abstract] [Full Text] [Related]

  • 55. Effect of in vitro cultivation on the stability of resistance of Trypanosoma brucei brucei to diminazene, isometamidium, quinapyramine, and Mel B.
    Kaminsky R, Zweygarth E.
    J Parasitol; 1989 Feb 28; 75(1):42-5. PubMed ID: 2918443
    [Abstract] [Full Text] [Related]

  • 56. Changes in properties of adenosine transporters in Trypanosoma evansi and modes of selection of resistance to the melaminophenyl arsenical drug, Mel Cy.
    Suswam EA, Taylor DW, Ross CA, Martin RJ.
    Vet Parasitol; 2001 Dec 13; 102(3):193-208. PubMed ID: 11777599
    [Abstract] [Full Text] [Related]

  • 57. Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase.
    Dormeyer M, Reckenfelderbäumer N, Ludemann H, Krauth-Siegel RL.
    J Biol Chem; 2001 Apr 06; 276(14):10602-6. PubMed ID: 11150302
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.