These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
476 related items for PubMed ID: 11930997
1. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Kordowska-Wiater M, Targoński Z. Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997 [Abstract] [Full Text] [Related]
2. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Kordowska-Wiater M, Targoński Z. Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823 [Abstract] [Full Text] [Related]
3. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF. Biotechnol Bioeng; 2006 Mar 05; 93(4):665-73. PubMed ID: 16372361 [Abstract] [Full Text] [Related]
4. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y, Park JY, Shiroma R, Tokuyasu K. J Biosci Bioeng; 2011 Jun 05; 111(6):682-6. PubMed ID: 21397557 [Abstract] [Full Text] [Related]
5. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Agbogbo FK, Coward-Kelly G. Biotechnol Lett; 2008 Sep 05; 30(9):1515-24. PubMed ID: 18431677 [Abstract] [Full Text] [Related]
6. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G. Biotechnol Bioeng; 2008 Mar 01; 99(4):783-90. PubMed ID: 17787015 [Abstract] [Full Text] [Related]
7. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. Appl Microbiol Biotechnol; 2009 Apr 01; 82(6):1037-47. PubMed ID: 19125247 [Abstract] [Full Text] [Related]
8. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S. Appl Microbiol Biotechnol; 2008 Nov 01; 81(2):243-55. PubMed ID: 18751695 [Abstract] [Full Text] [Related]
9. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S. Bioresour Technol; 2009 Apr 01; 100(8):2392-8. PubMed ID: 19128960 [Abstract] [Full Text] [Related]
16. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M. Appl Microbiol Biotechnol; 2005 Jun 01; 67(6):827-37. PubMed ID: 15630585 [Abstract] [Full Text] [Related]