These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
714 related items for PubMed ID: 11944943
1. Epithelia-mesenchyme interaction plays an essential role in transdifferentiation of retinal pigment epithelium of silver mutant quail: localization of FGF and related molecules and aberrant migration pattern of neural crest cells during eye rudiment formation. Araki M, Takano T, Uemonsa T, Nakane Y, Tsudzuki M, Kaneko T. Dev Biol; 2002 Apr 15; 244(2):358-71. PubMed ID: 11944943 [Abstract] [Full Text] [Related]
2. Early embryonic interaction of retinal pigment epithelium and mesenchymal tissue induces conversion of pigment epithelium to neural retinal fate in the silver mutation of the Japanese quail. Araki M, Yamao M, Tsudzuki M. Dev Growth Differ; 1998 Apr 15; 40(2):167-76. PubMed ID: 9572359 [Abstract] [Full Text] [Related]
3. Spontaneous transdifferentiation of quail pigmented epithelial cell is accompanied by a mutation in the Mitf gene. Mochii M, Ono T, Matsubara Y, Eguchi G. Dev Biol; 1998 Apr 15; 196(2):145-59. PubMed ID: 9576828 [Abstract] [Full Text] [Related]
4. Tissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster. Mitsuda S, Yoshii C, Ikegami Y, Araki M. Dev Biol; 2005 Apr 01; 280(1):122-32. PubMed ID: 15766753 [Abstract] [Full Text] [Related]
5. Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia. Sakaguchi DS, Janick LM, Reh TA. Dev Dyn; 1997 Aug 01; 209(4):387-98. PubMed ID: 9264262 [Abstract] [Full Text] [Related]
6. The genes involved in the morphogenesis of the eye. Matsuo T. Jpn J Ophthalmol; 1993 Aug 01; 37(3):215-51. PubMed ID: 7905035 [Abstract] [Full Text] [Related]
7. Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Mochii M, Mazaki Y, Mizuno N, Hayashi H, Eguchi G. Dev Biol; 1998 Jan 01; 193(1):47-62. PubMed ID: 9466887 [Abstract] [Full Text] [Related]
8. Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation. Araki M. Dev Growth Differ; 2007 Feb 01; 49(2):109-20. PubMed ID: 17335432 [Abstract] [Full Text] [Related]
9. Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development. Halfter W. J Comp Neurol; 1988 Feb 08; 268(2):161-70. PubMed ID: 3360983 [Abstract] [Full Text] [Related]
10. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Faraco CD, Vaz SA, Pástor MV, Erickson CA. Dev Dyn; 2001 Mar 08; 220(3):212-25. PubMed ID: 11241830 [Abstract] [Full Text] [Related]
11. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. Le Lièvre CS, Le Douarin NM. J Embryol Exp Morphol; 1975 Aug 08; 34(1):125-54. PubMed ID: 1185098 [Abstract] [Full Text] [Related]
12. Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Bumsted KM, Barnstable CJ. Invest Ophthalmol Vis Sci; 2000 Mar 08; 41(3):903-8. PubMed ID: 10711712 [Abstract] [Full Text] [Related]
13. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Yoshii C, Ueda Y, Okamoto M, Araki M. Dev Biol; 2007 Mar 01; 303(1):45-56. PubMed ID: 17184765 [Abstract] [Full Text] [Related]
14. Cellular localization and signaling activity of beta-catenin in migrating neural crest cells. de Melker AA, Desban N, Duband JL. Dev Dyn; 2004 Aug 01; 230(4):708-26. PubMed ID: 15254905 [Abstract] [Full Text] [Related]
15. Isolation and characterization of chondroitin sulfate proteoglycans from embryonic quail that influence neural crest cell behavior. Kerr RS, Newgreen DF. Dev Biol; 1997 Dec 01; 192(1):108-24. PubMed ID: 9405101 [Abstract] [Full Text] [Related]
16. Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant. Lee CS, May NR, Fan CM. Dev Biol; 2001 Aug 01; 236(1):17-29. PubMed ID: 11456441 [Abstract] [Full Text] [Related]
17. Formation of retinal pigment epithelium in vitro by transdifferentiation of neural retina cells. Opas M, Davies JR, Zhou Y, Dziak E. Int J Dev Biol; 2001 Jun 01; 45(4):633-42. PubMed ID: 11460999 [Abstract] [Full Text] [Related]
18. Changes in cell adhesion and extracellular matrix molecules in spontaneous spinal neural tube defects in avian embryos. Newgreen DF, Kerr RS, Minichiello J, Warren N. Teratology; 1997 Mar 01; 55(3):195-207. PubMed ID: 9181673 [Abstract] [Full Text] [Related]
19. Intraocular implantation of DNA-transfected retinal pigment epithelium cells: a new approach for analyzing molecular functions in the newt retinal regeneration. Chiba C, Nakamura K, Unno S, Saito T. Neurosci Lett; 2004 Sep 23; 368(2):171-5. PubMed ID: 15351443 [Abstract] [Full Text] [Related]
20. Neural and angiogenic defects in eyes of transgenic mice expressing a dominant-negative FGF receptor in the pigmented cells. Rousseau B, Dubayle D, Sennlaub F, Jeanny JC, Costet P, Bikfalvi A, Javerzat S. Exp Eye Res; 2000 Oct 23; 71(4):395-404. PubMed ID: 10995560 [Abstract] [Full Text] [Related] Page: [Next] [New Search]