These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 11952800
1. Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. Biel S, Simon J, Gross R, Ruiz T, Ruitenberg M, Kröger A. Eur J Biochem; 2002 Apr; 269(7):1974-83. PubMed ID: 11952800 [Abstract] [Full Text] [Related]
2. Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Kröger A, Biel S, Simon J, Gross R, Unden G, Lancaster CR. Biochim Biophys Acta; 2002 Jan 17; 1553(1-2):23-38. PubMed ID: 11803015 [Abstract] [Full Text] [Related]
3. Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Gross R, Simon J, Theis F, Kröger A. Arch Microbiol; 1998 Jul 17; 170(1):50-8. PubMed ID: 9639603 [Abstract] [Full Text] [Related]
4. Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB. Van Kuijk BL, Schlösser E, Stams AJ. Arch Microbiol; 1998 Apr 17; 169(4):346-52. PubMed ID: 9531636 [Abstract] [Full Text] [Related]
5. Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Gross R, Simon J, Lancaster CR, Kröger A. Mol Microbiol; 1998 Nov 17; 30(3):639-46. PubMed ID: 9822828 [Abstract] [Full Text] [Related]
11. A periplasmic flavoprotein in Wolinella succinogenes that resembles the fumarate reductase of Shewanella putrefaciens. Simon J, Gross R, Klimmek O, Ringel M, Kröger A. Arch Microbiol; 1998 May 17; 169(5):424-33. PubMed ID: 9560424 [Abstract] [Full Text] [Related]
15. Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase. Lancaster CR, Gorss R, Haas A, Ritter M, Mäntele W, Simon J, Kröger A. Proc Natl Acad Sci U S A; 2000 Nov 21; 97(24):13051-6. PubMed ID: 11186225 [Abstract] [Full Text] [Related]
16. Significance of MccR, MccC, MccD, MccL and 8-methylmenaquinone in sulfite respiration of Wolinella succinogenes. Eller J, Hein S, Simon J. Biochim Biophys Acta Bioenerg; 2019 Jan 21; 1860(1):12-21. PubMed ID: 30342041 [Abstract] [Full Text] [Related]
17. Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. Simon J, Gross R, Ringel M, Schmidt E, Kröger A. Eur J Biochem; 1998 Jan 15; 251(1-2):418-26. PubMed ID: 9492313 [Abstract] [Full Text] [Related]
18. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Hein S, Witt S, Simon J. Environ Microbiol; 2017 Dec 15; 19(12):4913-4925. PubMed ID: 28925551 [Abstract] [Full Text] [Related]
19. Periplasmic methacrylate reductase activity in Wolinella succinogenes. Gross R, Simon J, Kröger A. Arch Microbiol; 2001 Oct 15; 176(4):310-3. PubMed ID: 11685377 [Abstract] [Full Text] [Related]
20. Electroneutral and electrogenic catalysis by dihaem-containing succinate:quinone oxidoreductases. Lancaster CR, Herzog E, Juhnke HD, Madej MG, Müller FG, Paul R, Schleidt PG. Biochem Soc Trans; 2008 Oct 15; 36(Pt 5):996-1000. PubMed ID: 18793177 [Abstract] [Full Text] [Related] Page: [Next] [New Search]