These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 11954911

  • 1. Traffic pathways of Plasmodium vivax antigens during intraerythrocytic parasite development.
    Bracho C, Dunia I, De LR, Benedetti EL, Perez HA.
    Parasitol Res; 2002 Mar; 88(3):253-8. PubMed ID: 11954911
    [Abstract] [Full Text] [Related]

  • 2. Plasmodium vivax and Plasmodium chabaudi: intraerythrocytic traffic of antigenically homologous proteins involves a brefeldin A-sensitive secretory pathway.
    Bracho C, Dunia I, Romano M, Benedetti EL, Perez HA.
    Eur J Cell Biol; 2001 Feb; 80(2):164-70. PubMed ID: 11302521
    [Abstract] [Full Text] [Related]

  • 3. Evidence for trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a complex membrane network.
    Wickert H, Wissing F, Andrews KT, Stich A, Krohne G, Lanzer M.
    Eur J Cell Biol; 2003 Jun; 82(6):271-84. PubMed ID: 12868595
    [Abstract] [Full Text] [Related]

  • 4. Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer's clefts.
    Hinterberg K, Scherf A, Gysin J, Toyoshima T, Aikawa M, Mazie JC, da Silva LP, Mattei D.
    Exp Parasitol; 1994 Nov; 79(3):279-91. PubMed ID: 7957750
    [Abstract] [Full Text] [Related]

  • 5. Plasmodium vivax: malarial proteins associated with the membrane-bound caveola-vesicle complexes and cytoplasmic cleft structures of infected erythrocytes.
    Barnwell JW, Ingravallo P, Galinski MR, Matsumoto Y, Aikawa M.
    Exp Parasitol; 1990 Jan; 70(1):85-99. PubMed ID: 2403934
    [Abstract] [Full Text] [Related]

  • 6. Sorting of malarial antigens into vesicular compartments within the host cell cytoplasm as demonstrated by immunoelectron microscopy.
    Stenzel DJ, Kara UA.
    Eur J Cell Biol; 1989 Aug; 49(2):311-8. PubMed ID: 2673788
    [Abstract] [Full Text] [Related]

  • 7. Maurer's cleft organization in the cytoplasm of plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections.
    Wickert H, Göttler W, Krohne G, Lanzer M.
    Eur J Cell Biol; 2004 Oct; 83(10):567-82. PubMed ID: 15679102
    [Abstract] [Full Text] [Related]

  • 8. Immunoelectron microscopic localization of vivax malaria antigens to the clefts and caveola-vesicle complexes of infected erythrocytes.
    Matsumoto Y, Aikawa M, Barnwell JW.
    Am J Trop Med Hyg; 1988 Oct; 39(4):317-22. PubMed ID: 3056054
    [Abstract] [Full Text] [Related]

  • 9. Ultrastructure of erythrocytes from Aotus trivirgatus and Saimiri sciureus monkeys infected by Plasmodium vivax.
    Lanners HN.
    Parasitol Res; 1991 Oct; 77(5):395-401. PubMed ID: 1891448
    [Abstract] [Full Text] [Related]

  • 10. Caveolins and flotillin-2 are present in the blood stages of Plasmodium vivax.
    Bracho C, Dunia I, Romano M, Raposo G, De La Rosa M, Benedetti EL, Pérez HA.
    Parasitol Res; 2006 Jul; 99(2):153-9. PubMed ID: 16521037
    [Abstract] [Full Text] [Related]

  • 11. Biosynthesis, export and processing of a 45 kDa protein detected in membrane clefts of erythrocytes infected with Plasmodium falciparum.
    Das A, Elmendorf HG, Li WI, Haldar K.
    Biochem J; 1994 Sep 01; 302 ( Pt 2)(Pt 2):487-96. PubMed ID: 8093001
    [Abstract] [Full Text] [Related]

  • 12. Trafficking of malarial proteins to the host cell cytoplasm and erythrocyte surface membrane involves multiple pathways.
    Gormley JA, Howard RJ, Taraschi TF.
    J Cell Biol; 1992 Dec 01; 119(6):1481-95. PubMed ID: 1469045
    [Abstract] [Full Text] [Related]

  • 13. Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features.
    Hanssen E, Sougrat R, Frankland S, Deed S, Klonis N, Lippincott-Schwartz J, Tilley L.
    Mol Microbiol; 2008 Feb 01; 67(4):703-18. PubMed ID: 18067543
    [Abstract] [Full Text] [Related]

  • 14. Vesicle-mediated transport of membrane and proteins in malaria-infected erythrocytes.
    Barnwell JW.
    Blood Cells; 1990 Feb 01; 16(2-3):379-95. PubMed ID: 2257319
    [Abstract] [Full Text] [Related]

  • 15. Characterisation of a delta-COP homologue in the malaria parasite, Plasmodium falciparum.
    Adisa A, Rug M, Foley M, Tilley L.
    Mol Biochem Parasitol; 2002 Aug 07; 123(1):11-21. PubMed ID: 12165385
    [Abstract] [Full Text] [Related]

  • 16. Plasmodium falciparum antigens associated with membrane structures in the host erythrocyte cytoplasm.
    Stanley HA, Langreth SG, Reese RT.
    Mol Biochem Parasitol; 1989 Sep 07; 36(2):139-49. PubMed ID: 2671724
    [Abstract] [Full Text] [Related]

  • 17. Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes.
    Taraschi TF, Trelka D, Martinez S, Schneider T, O'Donnell ME.
    Int J Parasitol; 2001 Oct 07; 31(12):1381-91. PubMed ID: 11566305
    [Abstract] [Full Text] [Related]

  • 18. The role of the Maurer's clefts in protein transport in Plasmodium falciparum.
    Sam-Yellowe TY.
    Trends Parasitol; 2009 Jun 07; 25(6):277-84. PubMed ID: 19442584
    [Abstract] [Full Text] [Related]

  • 19. Evidence for vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes.
    Trelka DP, Schneider TG, Reeder JC, Taraschi TF.
    Mol Biochem Parasitol; 2000 Feb 25; 106(1):131-45. PubMed ID: 10743617
    [Abstract] [Full Text] [Related]

  • 20. Characterization of trafficking pathways and membrane genesis in malaria-infected erythrocytes.
    Pouvelle B, Gormley JA, Taraschi TF.
    Mol Biochem Parasitol; 1994 Jul 25; 66(1):83-96. PubMed ID: 7984190
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.