These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 11962772
1. Mechanistic model of myocardial energy metabolism under normal and ischemic conditions. Salem JE, Saidel GM, Stanley WC, Cabrera ME. Ann Biomed Eng; 2002 Feb; 30(2):202-16. PubMed ID: 11962772 [Abstract] [Full Text] [Related]
2. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC. J Physiol; 2007 Mar 15; 579(Pt 3):811-21. PubMed ID: 17185335 [Abstract] [Full Text] [Related]
3. Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Zhou L, Salem JE, Saidel GM, Stanley WC, Cabrera ME. Am J Physiol Heart Circ Physiol; 2005 May 15; 288(5):H2400-11. PubMed ID: 15681693 [Abstract] [Full Text] [Related]
4. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. Sharma N, Okere IC, Brunengraber DZ, McElfresh TA, King KL, Sterk JP, Huang H, Chandler MP, Stanley WC. J Physiol; 2005 Jan 15; 562(Pt 2):593-603. PubMed ID: 15550462 [Abstract] [Full Text] [Related]
5. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis. Cabrera ME, Saidel GM, Kalhan SC. Ann Biomed Eng; 1998 Jan 15; 26(1):1-27. PubMed ID: 10355547 [Abstract] [Full Text] [Related]
6. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Massie BM, Schaefer S, Garcia J, McKirnan MD, Schwartz GG, Wisneski JA, Weiner MW, White FC. Circulation; 1995 Mar 15; 91(6):1814-23. PubMed ID: 7882492 [Abstract] [Full Text] [Related]
7. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies. Zhou L, Cabrera ME, Okere IC, Sharma N, Stanley WC. Am J Physiol Heart Circ Physiol; 2006 Sep 15; 291(3):H1036-46. PubMed ID: 16603683 [Abstract] [Full Text] [Related]
8. Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism. Salem JE, Stanley WC, Cabrera ME. Biomed Eng Online; 2004 Jun 02; 3(1):15. PubMed ID: 15175110 [Abstract] [Full Text] [Related]
9. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Calvani M, Reda E, Arrigoni-Martelli E. Basic Res Cardiol; 2000 Apr 02; 95(2):75-83. PubMed ID: 10826498 [Abstract] [Full Text] [Related]
10. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME. J Physiol; 2005 Dec 15; 569(Pt 3):925-37. PubMed ID: 16223766 [Abstract] [Full Text] [Related]
11. Effects of coronary perfusion during myocardial hypoxia. Comparison of metabolic and hemodynamic events with global ischemia and hypoxemia. Liedtke AJ. J Thorac Cardiovasc Surg; 1976 May 15; 71(5):726-35. PubMed ID: 1263557 [Abstract] [Full Text] [Related]
12. Metabolic responses to varying restrictions of coronary blood flow in swine. Liedtke AJ, Hughes HC, Neely JR. Am J Physiol; 1975 Feb 15; 228(2):655-62. PubMed ID: 1119586 [Abstract] [Full Text] [Related]
13. Increased nonoxidative glycolysis despite continued fatty acid uptake during demand-induced myocardial ischemia. Chandler MP, Huang H, McElfresh TA, Stanley WC. Am J Physiol Heart Circ Physiol; 2002 May 15; 282(5):H1871-8. PubMed ID: 11959654 [Abstract] [Full Text] [Related]
14. Effect of graded reductions of coronary pressure and flow on myocardial metabolism and performance: a model of "hibernating" myocardium. Keller AM, Cannon PJ. J Am Coll Cardiol; 1991 Jun 15; 17(7):1661-70. PubMed ID: 2033199 [Abstract] [Full Text] [Related]
15. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria. Hansford RG. J Biol Chem; 1976 Sep 25; 251(18):5483-9. PubMed ID: 184082 [Abstract] [Full Text] [Related]
16. Metabolic adaptation to a gradual reduction in myocardial blood flow. Arai AE, Grauer SE, Anselone CG, Pantely GA, Bristow JD. Circulation; 1995 Jul 15; 92(2):244-52. PubMed ID: 7600657 [Abstract] [Full Text] [Related]
17. Step and ramp induction of myocardial ischemia: comparison of in vivo and in silico results. Salem JE, Cabrera ME, Chandler MP, McElfresh TA, Huang H, Sterk JP, Stanley WC. J Physiol Pharmacol; 2004 Sep 15; 55(3):519-36. PubMed ID: 15381824 [Abstract] [Full Text] [Related]
18. Diabetes and the control of pyruvate dehydrogenase in rat heart mitochondria by concentration ratios of adenosine triphosphate/adenosine diphosphate, of reduced/oxidized nicotinamide-adenine dinucleotide and of acetyl-coenzyme A/coenzyme A. Kerbey AL, Radcliffe PM, Randle PJ. Biochem J; 1977 Jun 15; 164(3):509-19. PubMed ID: 196589 [Abstract] [Full Text] [Related]
19. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Am J Physiol; 1995 Jan 15; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [Abstract] [Full Text] [Related]
20. Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Williamson JR, Schaffer SW, Ford C, Safer B. Circulation; 1976 Mar 15; 53(3 Suppl):I3-14. PubMed ID: 3293 [Abstract] [Full Text] [Related] Page: [Next] [New Search]