These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 11967098
1. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H. Plant J; 2002 Apr; 30(1):115-22. PubMed ID: 11967098 [Abstract] [Full Text] [Related]
2. Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Ballester A, Cervera M, Peña L. Plant Cell Rep; 2007 Jan; 26(1):39-45. PubMed ID: 16927091 [Abstract] [Full Text] [Related]
3. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision. Woo HJ, Qin Y, Park SY, Park SK, Cho YG, Shin KS, Lim MH, Cho HS. PLoS One; 2015 Jan; 10(7):e0132667. PubMed ID: 26172549 [Abstract] [Full Text] [Related]
4. Production of marker-free transgenic Nierembergia caerulea using MAT vector system. Khan RS, Chin DP, Nakamura I, Mii M. Plant Cell Rep; 2006 Sep; 25(9):914-9. PubMed ID: 16604375 [Abstract] [Full Text] [Related]
5. Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. Scaramelli L, Balestrazzi A, Bonadei M, Piano E, Carbonera D, Confalonieri M. Plant Cell Rep; 2009 Feb; 28(2):197-211. PubMed ID: 19011862 [Abstract] [Full Text] [Related]
6. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. López-Noguera S, Petri C, Burgos L. Plant Cell Rep; 2009 Dec; 28(12):1781-90. PubMed ID: 19820947 [Abstract] [Full Text] [Related]
7. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Sugita K, Kasahara T, Matsunaga E, Ebinuma H. Plant J; 2000 Jun; 22(5):461-9. PubMed ID: 10849362 [Abstract] [Full Text] [Related]
8. Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Ballester A, Cervera M, Peña L. Plant Cell Rep; 2008 Jun; 27(6):1005-15. PubMed ID: 18317775 [Abstract] [Full Text] [Related]
15. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy. Gao X, Zhou J, Li J, Zou X, Zhao J, Li Q, Xia R, Yang R, Wang D, Zuo Z, Tu J, Tao Y, Chen X, Xie Q, Zhu Z, Qu S. Plant Physiol; 2015 Jan; 167(1):11-24. PubMed ID: 25371551 [Abstract] [Full Text] [Related]
16. Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M. Plant Cell Rep; 2011 Apr; 30(4):587-97. PubMed ID: 21184230 [Abstract] [Full Text] [Related]
17. Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Darwish NA, Khan RS, Ntui VO, Nakamura I, Mii M. Plant Cell Rep; 2014 Mar; 33(3):411-21. PubMed ID: 24311155 [Abstract] [Full Text] [Related]
18. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Gleave AP, Mitra DS, Mudge SR, Morris BA. Plant Mol Biol; 1999 May; 40(2):223-35. PubMed ID: 10412902 [Abstract] [Full Text] [Related]