These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif. Steinmetzer K, Hillisch A, Behlke J, Brantl S. Proteins; 2000 Mar 01; 38(4):393-406. PubMed ID: 10707026 [Abstract] [Full Text] [Related]
3. Transcriptional repressor CopR: amino acids involved in forming the dimeric interface. Steinmetzer K, Hillisch A, Behlke J, Brantl S. Proteins; 2000 Jun 01; 39(4):408-16. PubMed ID: 10813822 [Abstract] [Full Text] [Related]
4. Plasmid pIP501 encoded transcriptional repressor CopR binds to its target DNA as a dimer. Steinmetzer K, Behlke J, Brantl S. J Mol Biol; 1998 Oct 30; 283(3):595-603. PubMed ID: 9784369 [Abstract] [Full Text] [Related]
5. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA. Steinmetzer K, Brantl S. J Mol Biol; 1997 Jun 27; 269(5):684-93. PubMed ID: 9223633 [Abstract] [Full Text] [Related]
6. Transcriptional repressor CopR: the structured acidic C terminus is important for protein stability. Kuhn K, Steinmetzer K, Brantl S. J Mol Biol; 2000 Jul 28; 300(5):1021-31. PubMed ID: 10903850 [Abstract] [Full Text] [Related]
7. Plasmid pIP501 encoded transcriptional repressor CopR: single amino acids involved in dimerization are also important for folding of the monomer. Steinmetzer K, Kuhn K, Behlke J, Golbik R, Brantl S. Plasmid; 2002 May 28; 47(3):201-9. PubMed ID: 12151235 [Abstract] [Full Text] [Related]
12. Plasmid transcriptional repressor CopG oligomerises to render helical superstructures unbound and in complexes with oligonucleotides. Costa M, Solà M, del Solar G, Eritja R, Hernández-Arriaga AM, Espinosa M, Gomis-Rüth FX, Coll M. J Mol Biol; 2001 Jul 06; 310(2):403-17. PubMed ID: 11428897 [Abstract] [Full Text] [Related]
13. The copR gene product of plasmid pIP501 acts as a transcriptional repressor at the essential repR promoter. Brantl S. Mol Microbiol; 1994 Nov 06; 14(3):473-83. PubMed ID: 7533881 [Abstract] [Full Text] [Related]
14. A variant of lambda repressor with an altered pattern of cooperative binding to DNA sites. Astromoff A, Ptashne M. Proc Natl Acad Sci U S A; 1995 Aug 29; 92(18):8110-4. PubMed ID: 7667253 [Abstract] [Full Text] [Related]
15. Time-resolved fluorescence methods for analysis of DNA-protein interactions. Millar DP. Methods Enzymol; 2000 Aug 29; 323():442-59. PubMed ID: 10944763 [No Abstract] [Full Text] [Related]
16. A map of the biotin repressor-biotin operator interface: binding of a winged helix-turn-helix protein dimer to a forty base-pair site. Streaker ED, Beckett D. J Mol Biol; 1998 May 15; 278(4):787-800. PubMed ID: 9614942 [Abstract] [Full Text] [Related]
17. DNA conformational changes associated with the cooperative binding of cI-repressor of bacteriophage lambda to OR. Strahs D, Brenowitz M. J Mol Biol; 1994 Dec 16; 244(5):494-510. PubMed ID: 7990137 [Abstract] [Full Text] [Related]
18. Protein domains and conformational changes in the activation of RepA, a DNA replication initiator. Giraldo R, Andreu JM, Díaz-Orejas R. EMBO J; 1998 Aug 03; 17(15):4511-26. PubMed ID: 9687517 [Abstract] [Full Text] [Related]
19. Recognition of DNA structure by 434 repressor. Koudelka GB. Nucleic Acids Res; 1998 Jan 15; 26(2):669-75. PubMed ID: 9421532 [Abstract] [Full Text] [Related]
20. The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. Gomis-Rüth FX, Solá M, Acebo P, Párraga A, Guasch A, Eritja R, González A, Espinosa M, del Solar G, Coll M. EMBO J; 1998 Dec 15; 17(24):7404-15. PubMed ID: 9857196 [Abstract] [Full Text] [Related] Page: [Next] [New Search]