These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 11977094

  • 1. The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion.
    Tam LW, Lefebvre PA.
    Cell Motil Cytoskeleton; 2002 Apr; 51(4):197-212. PubMed ID: 11977094
    [Abstract] [Full Text] [Related]

  • 2. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM, Kabututu ZP, Hill KL.
    J Cell Sci; 2007 May 01; 120(Pt 9):1513-20. PubMed ID: 17405810
    [Abstract] [Full Text] [Related]

  • 3. Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion.
    Fujiu K, Nakayama Y, Yanagisawa A, Sokabe M, Yoshimura K.
    Curr Biol; 2009 Jan 27; 19(2):133-9. PubMed ID: 19167228
    [Abstract] [Full Text] [Related]

  • 4. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella.
    Baron DM, Ralston KS, Kabututu ZP, Hill KL.
    J Cell Sci; 2007 Feb 01; 120(Pt 3):478-91. PubMed ID: 17227795
    [Abstract] [Full Text] [Related]

  • 5. The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella.
    Meng D, Cao M, Oda T, Pan J.
    J Cell Sci; 2014 Jan 15; 127(Pt 2):281-7. PubMed ID: 24259666
    [Abstract] [Full Text] [Related]

  • 6. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii.
    McCord RP, Yukich JN, Bernd KK.
    Cell Motil Cytoskeleton; 2005 Jul 15; 61(3):137-44. PubMed ID: 15887297
    [Abstract] [Full Text] [Related]

  • 7. Two flagellar genes, AGG2 and AGG3, mediate orientation to light in Chlamydomonas.
    Iomini C, Li L, Mo W, Dutcher SK, Piperno G.
    Curr Biol; 2006 Jun 06; 16(11):1147-53. PubMed ID: 16753570
    [Abstract] [Full Text] [Related]

  • 8. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants.
    Kamiya R.
    Cell Motil Cytoskeleton; 1995 Jun 06; 32(2):98-102. PubMed ID: 8681402
    [Abstract] [Full Text] [Related]

  • 9. Cloning of Chlamydomonas p60 katanin and localization to the site of outer doublet severing during deflagellation.
    Lohret TA, Zhao L, Quarmby LM.
    Cell Motil Cytoskeleton; 1999 Jun 06; 43(3):221-31. PubMed ID: 10401578
    [Abstract] [Full Text] [Related]

  • 10. The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis.
    Dawe HR, Farr H, Portman N, Shaw MK, Gull K.
    J Cell Sci; 2005 Dec 01; 118(Pt 23):5421-30. PubMed ID: 16278296
    [Abstract] [Full Text] [Related]

  • 11. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly.
    Ahmed NT, Mitchell DR.
    Mol Biol Cell; 2005 Oct 01; 16(10):5004-12. PubMed ID: 16093345
    [Abstract] [Full Text] [Related]

  • 12. Protofilament ribbon compartments of ciliary and flagellar microtubules.
    Linck RW, Norrander JM.
    Protist; 2003 Oct 01; 154(3-4):299-311. PubMed ID: 14658491
    [No Abstract] [Full Text] [Related]

  • 13. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas.
    Mitchell DR.
    Cell Motil Cytoskeleton; 2003 Oct 01; 56(2):120-9. PubMed ID: 14506709
    [Abstract] [Full Text] [Related]

  • 14. Sequence and structure of a new coiled coil protein from a microtubule bundle in Giardia.
    Marshall J, Holberton DV.
    J Mol Biol; 1993 May 20; 231(2):521-30. PubMed ID: 8510163
    [Abstract] [Full Text] [Related]

  • 15. Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules.
    Wargo MJ, McPeek MA, Smith EF.
    J Cell Sci; 2004 May 15; 117(Pt 12):2533-44. PubMed ID: 15128866
    [Abstract] [Full Text] [Related]

  • 16. Axonemal protofilament ribbons, DM10 domains, and the link to juvenile myoclonic epilepsy.
    King SM.
    Cell Motil Cytoskeleton; 2006 May 15; 63(5):245-53. PubMed ID: 16572395
    [Abstract] [Full Text] [Related]

  • 17. Polarity of flagellar assembly in Chlamydomonas.
    Johnson KA, Rosenbaum JL.
    J Cell Biol; 1992 Dec 15; 119(6):1605-11. PubMed ID: 1281816
    [Abstract] [Full Text] [Related]

  • 18. Ca2+-dependent waveform conversion in the flagellar axoneme of Chlamydomonas mutants lacking the central-pair/radial spoke system.
    Wakabayashi K, Yagi T, Kamiya R.
    Cell Motil Cytoskeleton; 1997 Dec 15; 38(1):22-8. PubMed ID: 9295138
    [Abstract] [Full Text] [Related]

  • 19. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules.
    Norrander JM, Perrone CA, Amos LA, Linck RW.
    J Mol Biol; 1996 Mar 29; 257(2):385-97. PubMed ID: 8609631
    [Abstract] [Full Text] [Related]

  • 20. The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility.
    Rupp G, O'Toole E, Porter ME.
    Mol Biol Cell; 2001 Mar 29; 12(3):739-51. PubMed ID: 11251084
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.