These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 11979516
21. Repetitive interactions observed in the crystal structure of a collagen-model peptide, [(Pro-Pro-Gly)9]3. Hongo C, Noguchi K, Okuyama K, Tanaka Y, Nishino N. J Biochem; 2005 Aug; 138(2):135-44. PubMed ID: 16091587 [Abstract] [Full Text] [Related]
22. Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution. Improta R, Benzi C, Barone V. J Am Chem Soc; 2001 Dec 19; 123(50):12568-77. PubMed ID: 11741421 [Abstract] [Full Text] [Related]
23. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. Bella J, Liu J, Kramer R, Brodsky B, Berman HM. J Mol Biol; 2006 Sep 15; 362(2):298-311. PubMed ID: 16919298 [Abstract] [Full Text] [Related]
24. A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen-like peptides. Park S, Radmer RJ, Klein TE, Pande VS. J Comput Chem; 2005 Nov 30; 26(15):1612-6. PubMed ID: 16170799 [Abstract] [Full Text] [Related]
25. Characterization of collagen-like heterotrimers: implications for triple-helix stability. Berisio R, Granata V, Vitagliano L, Zagari A. Biopolymers; 2004 Apr 15; 73(6):682-8. PubMed ID: 15048771 [Abstract] [Full Text] [Related]
26. Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)(10)](3). Berisio R, Vitagliano L, Mazzarella L, Zagari A. Protein Sci; 2002 Feb 15; 11(2):262-70. PubMed ID: 11790836 [Abstract] [Full Text] [Related]
27. The role of cystine knots in collagen folding and stability, part I. Conformational properties of (Pro-Hyp-Gly)5 and (Pro-(4S)-FPro-Gly)5 model trimers with an artificial cystine knot. Barth D, Musiol HJ, Schütt M, Fiori S, Milbradt AG, Renner C, Moroder L. Chemistry; 2003 Aug 04; 9(15):3692-702. PubMed ID: 12898696 [Abstract] [Full Text] [Related]
28. Inter-chain proline:proline contacts contribute to the stability of the triple helical conformation. Bhatnagar RS, Pattabiraman N, Sorensen KR, Langridge R, MacElroy RD, Renugopalakrishnan V. J Biomol Struct Dyn; 1988 Oct 04; 6(2):223-33. PubMed ID: 3271521 [Abstract] [Full Text] [Related]
29. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence. Okuyama K, Miyama K, Morimoto T, Masakiyo K, Mizuno K, Bächinger HP. Biopolymers; 2011 Sep 04; 95(9):628-40. PubMed ID: 21442606 [Abstract] [Full Text] [Related]
30. Effect of the -Gly-3(S)-hydroxyprolyl-4(R)-hydroxyprolyl- tripeptide unit on the stability of collagen model peptides. Mizuno K, Peyton DH, Hayashi T, Engel J, Bächinger HP. FEBS J; 2008 Dec 04; 275(23):5830-40. PubMed ID: 19021759 [Abstract] [Full Text] [Related]
31. Cyclotriveratrylene (CTV) as a new chiral triacid scaffold capable of inducing triple helix formation of collagen peptides containing either a native sequence or Pro-Hyp-Gly repeats. Rump ET, Rijkers DT, Hilbers HW, de Groot PG, Liskamp RM. Chemistry; 2002 Oct 18; 8(20):4613-21. PubMed ID: 12362398 [Abstract] [Full Text] [Related]
32. [Two types of tripeptide conformation in collagen. Calculation of the structure of (Gly-Pro-Ser)n and (Gly-Val-Hyp)n polytripeptides]. Abagyan RA, Tumanian VG, Esipova NG. Bioorg Khim; 1984 Apr 18; 10(4):476-82. PubMed ID: 6548632 [Abstract] [Full Text] [Related]
33. Cis-trans proline isomerization effects on collagen triple-helix stability are limited. Dai N, Etzkorn FA. J Am Chem Soc; 2009 Sep 30; 131(38):13728-32. PubMed ID: 19725497 [Abstract] [Full Text] [Related]
34. Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. DeRider ML, Wilkens SJ, Waddell MJ, Bretscher LE, Weinhold F, Raines RT, Markley JL. J Am Chem Soc; 2002 Mar 20; 124(11):2497-505. PubMed ID: 11890798 [Abstract] [Full Text] [Related]
35. Unique side chain conformation of a Leu residue in a triple-helical structure. Okuyama K, Narita H, Kawaguchi T, Noguchi K, Tanaka Y, Nishino N. Biopolymers; 2007 Jun 15; 86(3):212-21. PubMed ID: 17373653 [Abstract] [Full Text] [Related]
36. Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides. Yang W, Chan VC, Kirkpatrick A, Ramshaw JA, Brodsky B. J Biol Chem; 1997 Nov 14; 272(46):28837-40. PubMed ID: 9360948 [Abstract] [Full Text] [Related]
37. Crystallographic evidence for C alpha-H...O=C hydrogen bonds in a collagen triple helix. Bella J, Berman HM. J Mol Biol; 1996 Dec 13; 264(4):734-42. PubMed ID: 8980682 [Abstract] [Full Text] [Related]
38. Crystal structures of collagen model peptides with Pro-Hyp-Gly repeating sequence at 1.26 A resolution: implications for proline ring puckering. Okuyama K, Hongo C, Fukushima R, Wu G, Narita H, Noguchi K, Tanaka Y, Nishino N. Biopolymers; 2004 Dec 13; 76(5):367-77. PubMed ID: 15386273 [Abstract] [Full Text] [Related]
39. Quantum mechanical and NMR studies of ring puckering and cis/trans-rotameric interconversion in prolines and hydroxyprolines. Aliev AE, Bhandal S, Courtier-Murias D. J Phys Chem A; 2009 Oct 08; 113(40):10858-65. PubMed ID: 19757781 [Abstract] [Full Text] [Related]
40. Contribution of tertiary amides to the conformational stability of collagen triple helices. Kersteen EA, Raines RT. Biopolymers; 2001 Jul 08; 59(1):24-8. PubMed ID: 11343277 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]