These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


737 related items for PubMed ID: 11986662

  • 1. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG, Lin SY, El-Kady I, Biswas R, Ho KM.
    Nature; 2002 May 02; 417(6884):52-5. PubMed ID: 11986662
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM.
    Nature; 2000 May 25; 405(6785):437-40. PubMed ID: 10839534
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Diamond-structured photonic crystals.
    Maldovan M, Thomas EL.
    Nat Mater; 2004 Sep 25; 3(9):593-600. PubMed ID: 15343291
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency.
    Luo M, Liu QH.
    J Opt Soc Am A Opt Image Sci Vis; 2010 Aug 01; 27(8):1878-84. PubMed ID: 20686594
    [Abstract] [Full Text] [Related]

  • 8. Self-assembly route for photonic crystals with a bandgap in the visible region.
    Hynninen AP, Thijssen JH, Vermolen EC, Dijkstra M, van Blaaderen A.
    Nat Mater; 2007 Mar 01; 6(3):202-5. PubMed ID: 17293851
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y, Piret F, Léonard T, Su BL.
    J Colloid Interface Sci; 2010 Aug 01; 348(1):43-8. PubMed ID: 20466381
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Experimental measurement of the photonic properties of icosahedral quasicrystals.
    Man W, Megens M, Steinhardt PJ, Chaikin PM.
    Nature; 2005 Aug 18; 436(7053):993-6. PubMed ID: 16107842
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM, Venkataraman N, Gallagher MT, Müller D, West JA, Borrelli NF, Allan DC, Koch KW.
    Nature; 2003 Aug 07; 424(6949):657-9. PubMed ID: 12904788
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II.
    Cao W, Muñoz A, Palffy-Muhoray P, Taheri B.
    Nat Mater; 2002 Oct 07; 1(2):111-3. PubMed ID: 12618825
    [Abstract] [Full Text] [Related]

  • 20. Passband modes beyond waveguide cutoff in metallic tilted-woodpile photonic crystals.
    Sun P, Williams JD.
    Opt Express; 2011 Apr 11; 19(8):7373-80. PubMed ID: 21503048
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.