These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


352 related items for PubMed ID: 11988639

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A, Lopaschuk GD.
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, Mohr FW, Schwarzer M.
    Cardiovasc Res; 2010 Jun 01; 86(3):461-70. PubMed ID: 20035032
    [Abstract] [Full Text] [Related]

  • 5. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.
    Fukushima A, Lopaschuk GD.
    Biochim Biophys Acta; 2016 Oct 01; 1861(10):1525-34. PubMed ID: 26996746
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Regulation of energy substrate metabolism in the diabetic heart.
    Stanley WC, Lopaschuk GD, McCormack JG.
    Cardiovasc Res; 1997 Apr 01; 34(1):25-33. PubMed ID: 9217869
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
    Fillmore N, Mori J, Lopaschuk GD.
    Br J Pharmacol; 2014 Apr 01; 171(8):2080-90. PubMed ID: 24147975
    [Abstract] [Full Text] [Related]

  • 12. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y, Syamsunarno MRAA, Koitabashi N, Yamaguchi A, Hanaoka H, Hishiki T, Nagahata-Naito Y, Obinata H, Sano M, Sunaga H, Matsui H, Tsushima Y, Suematsu M, Kurabayashi M, Iso T.
    Cardiovasc Res; 2018 Jul 01; 114(8):1132-1144. PubMed ID: 29554241
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Energy metabolism in the hypertrophied heart.
    Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF.
    Heart Fail Rev; 2002 Apr 01; 7(2):161-73. PubMed ID: 11988640
    [Abstract] [Full Text] [Related]

  • 15. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity.
    Karwi QG, Sun Q, Lopaschuk GD.
    Cells; 2021 Nov 21; 10(11):. PubMed ID: 34831481
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The PPAR trio: regulators of myocardial energy metabolism in health and disease.
    Madrazo JA, Kelly DP.
    J Mol Cell Cardiol; 2008 Jun 21; 44(6):968-975. PubMed ID: 18462747
    [Abstract] [Full Text] [Related]

  • 18. Abnormal mechanical function in diabetes: relationship to altered myocardial carbohydrate/lipid metabolism.
    Lopaschuk GD.
    Coron Artery Dis; 1996 Feb 21; 7(2):116-23. PubMed ID: 8813442
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The myocardium in congestive heart failure.
    Katz AM.
    Am J Cardiol; 1989 Jan 03; 63(2):12A-16A. PubMed ID: 2521266
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.