These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 12002864

  • 1. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears.
    Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Cyr E, Gorga MP.
    J Acoust Soc Am; 2002 Apr; 111(4):1800-9. PubMed ID: 12002864
    [Abstract] [Full Text] [Related]

  • 2. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST, Gorga MP, Dorn PA.
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [Abstract] [Full Text] [Related]

  • 3. Distortion product otoacoustic emission suppression tuning curves in normal-hearing and hearing-impaired human ears.
    Gorga MP, Neely ST, Dierking DM, Dorn PA, Hoover BM, Fitzpatrick DF.
    J Acoust Soc Am; 2003 Jul; 114(1):263-78. PubMed ID: 12880040
    [Abstract] [Full Text] [Related]

  • 4. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears.
    Boege P, Janssen T.
    J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865
    [Abstract] [Full Text] [Related]

  • 5. Clinical test performance of distortion-product otoacoustic emissions using new stimulus conditions.
    Johnson TA, Neely ST, Kopun JG, Dierking DM, Tan H, Gorga MP.
    Ear Hear; 2010 Feb; 31(1):74-83. PubMed ID: 19701088
    [Abstract] [Full Text] [Related]

  • 6. Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions.
    Gorga MP, Neely ST, Dorn PA, Hoover BM.
    J Acoust Soc Am; 2003 Jun; 113(6):3275-84. PubMed ID: 12822800
    [Abstract] [Full Text] [Related]

  • 7. Sources of distortion product otoacoustic emissions revealed by suppression experiments and inverse fast Fourier transforms in normal ears.
    Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Gorga MP.
    J Acoust Soc Am; 2001 Jun; 109(6):2862-79. PubMed ID: 11425129
    [Abstract] [Full Text] [Related]

  • 8. Cochlear Mechanisms and Otoacoustic Emission Test Performance.
    Go NA, Stamper GC, Johnson TA.
    Ear Hear; 2019 Jun; 40(2):401-417. PubMed ID: 29952805
    [Abstract] [Full Text] [Related]

  • 9. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC, Keefe DH.
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [Abstract] [Full Text] [Related]

  • 10. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE, Long KM, Lees SE.
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [Abstract] [Full Text] [Related]

  • 11. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S.
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [Abstract] [Full Text] [Related]

  • 12. Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears.
    Stover LJ, Neely ST, Gorga MP.
    J Acoust Soc Am; 1999 Nov; 106(5):2669-78. PubMed ID: 10573884
    [Abstract] [Full Text] [Related]

  • 13. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1.
    Whitehead ML, McCoy MJ, Lonsbury-Martin BL, Martin GK.
    J Acoust Soc Am; 1995 Apr; 97(4):2346-58. PubMed ID: 7714254
    [Abstract] [Full Text] [Related]

  • 14. Evidence of upward spread of suppression in DPOAE measurements.
    Gorga MP, Neely ST, Dorn PA, Dierking D, Cyr E.
    J Acoust Soc Am; 2002 Dec; 112(6):2910-20. PubMed ID: 12509012
    [Abstract] [Full Text] [Related]

  • 15. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears.
    Hauser R, Probst R.
    J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169
    [Abstract] [Full Text] [Related]

  • 16. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears.
    Schairer KS, Keefe DH.
    J Acoust Soc Am; 2005 Feb; 117(2):818-32. PubMed ID: 15759702
    [Abstract] [Full Text] [Related]

  • 17. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears.
    Konrad-Martin D, Keefe DH.
    J Acoust Soc Am; 2005 Jun; 117(6):3799-815. PubMed ID: 16018483
    [Abstract] [Full Text] [Related]

  • 18. Distortion product otoacoustic emission input/output functions in normal-hearing and hearing-impaired human ears.
    Dorn PA, Konrad-Martin D, Neely ST, Keefe DH, Cyr E, Gorga MP.
    J Acoust Soc Am; 2001 Dec; 110(6):3119-31. PubMed ID: 11785813
    [Abstract] [Full Text] [Related]

  • 19. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level.
    Burkard R, Salvi R, Chen L.
    Audiol Neurootol; 1996 Dec; 1(4):197-213. PubMed ID: 9390802
    [Abstract] [Full Text] [Related]

  • 20. From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss.
    Gorga MP, Neely ST, Ohlrich B, Hoover B, Redner J, Peters J.
    Ear Hear; 1997 Dec; 18(6):440-55. PubMed ID: 9416447
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.