These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 12002864
41. Observations of Distortion Product Otoacoustic Emission Components in Adults With Hearing Loss. Prieve BA, Thomas L, Long G, Talmadge C. Ear Hear; 2020; 41(3):652-662. PubMed ID: 31569117 [Abstract] [Full Text] [Related]
42. Gender effects on high frequency distortion product otoacoustic emissions in humans. Dunckley KT, Dreisbach LE. Ear Hear; 2004 Dec; 25(6):554-64. PubMed ID: 15604916 [Abstract] [Full Text] [Related]
43. Estimating cochlear filter response properties from distortion product otoacoustic emission (DPOAE) phase delay measurements in normal hearing human adults. Bowman DM, Eggermont JJ, Brown DK, Kimberley BP. Hear Res; 1998 May; 119(1-2):14-26. PubMed ID: 9641315 [Abstract] [Full Text] [Related]
44. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM. Ear Hear; 2012 May; 33(1):69-78. PubMed ID: 21747284 [Abstract] [Full Text] [Related]
45. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study. Knight RD, Kemp DT. J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654 [Abstract] [Full Text] [Related]
46. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. Martin GK, Jassir D, Stagner BB, Whitehead ML, Lonsbury-Martin BL. J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319 [Abstract] [Full Text] [Related]
47. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra. Lai J, Bartlett EL. Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530 [Abstract] [Full Text] [Related]
48. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz. Jedrzejczak WW, Kochanek K, Trzaskowski B, Pilka E, Skarzynski PH, Skarzynski H. Ear Hear; 2012 Sep; 33(6):757-67. PubMed ID: 22710662 [Abstract] [Full Text] [Related]
49. Weighted DPOAE input/output-functions: a tool for automatic assessment of hearing loss in clinical application. Oswald JA, Janssen T. Z Med Phys; 2003 Sep; 13(2):93-8. PubMed ID: 12868334 [Abstract] [Full Text] [Related]
50. [Sound and velocity DPOAEs : Technology, methodology and perspectives]. Dalhoff E, Vetesník A, Turcanu D, Gummer AW. HNO; 2010 Jun; 58(6):543-55. PubMed ID: 20533015 [Abstract] [Full Text] [Related]
51. Stimulus ratio dependence of low-frequency distortion-product otoacoustic emissions in humans. Christensen AT, Ordoñez R, Hammershøi D. J Acoust Soc Am; 2015 Feb; 137(2):679-89. PubMed ID: 25698003 [Abstract] [Full Text] [Related]
52. [Increased amplitude of distortion product emissions in the human caused by contralateral low intensity acoustic stimulation]. Nieschalk M, Beneking R, Stoll W. HNO; 1997 May; 45(5):378-84. PubMed ID: 9265021 [Abstract] [Full Text] [Related]
53. Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils. Mills DM. J Acoust Soc Am; 2000 May; 107(5 Pt 1):2586-602. PubMed ID: 10830382 [Abstract] [Full Text] [Related]
54. Two-source interference as the major reason for auditory-threshold estimation error based on DPOAE input-output functions in normal-hearing subjects. Dalhoff E, Turcanu D, Vetešník A, Gummer AW. Hear Res; 2013 Feb; 296():67-82. PubMed ID: 23268357 [Abstract] [Full Text] [Related]
55. Suppression of the 2f1-f2 otoacoustic emission in humans. Harris FP, Probst R, Xu L. Hear Res; 1992 Dec; 64(1):133-41. PubMed ID: 1490896 [Abstract] [Full Text] [Related]