These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 12002864

  • 61. Clinical relevance of distortion product emissions by means of receiver operating characteristic (ROC) analysis.
    Steinhart HU, Bohlender JE, Benttzien S, Hoppe U.
    Scand Audiol; 2001; 30(3):131-40. PubMed ID: 11683451
    [Abstract] [Full Text] [Related]

  • 62. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. II. Fine structure for different shapes of cochlear hearing loss.
    Mauermann M, Uppenkamp S, van Hengel PW, Kollmeier B.
    J Acoust Soc Am; 1999 Dec; 106(6):3484-91. PubMed ID: 10615688
    [Abstract] [Full Text] [Related]

  • 63. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D, Keefe DH.
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [Abstract] [Full Text] [Related]

  • 64. A Comparison of Distortion Product Otoacoustic Emission Properties in Ménière's Disease Patients and Normal-Hearing Participants.
    Drexl M, Krause E, Gürkov R.
    Ear Hear; 2018 Oct; 39(1):42-47. PubMed ID: 28671918
    [Abstract] [Full Text] [Related]

  • 65.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 66.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68. Suppression tuning in noise-exposed rabbits.
    Howard MA, Stagner BB, Foster PK, Lonsbury-Martin BL, Martin GK.
    J Acoust Soc Am; 2003 Jul; 114(1):279-93. PubMed ID: 12880041
    [Abstract] [Full Text] [Related]

  • 69.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 70. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability.
    Whitehead ML, Lonsbury-Martin BL, Martin GK.
    J Acoust Soc Am; 1992 Nov; 92(5):2662-82. PubMed ID: 1479129
    [Abstract] [Full Text] [Related]

  • 71. [A research for basic properties of distortion product otoacoustic emissions in normally hearing subjects].
    Liu A, Cui Y, Huang H.
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1998 Oct; 12(10):435-8. PubMed ID: 11263229
    [Abstract] [Full Text] [Related]

  • 72. The use of cumulative distributions to determine critical values and levels of confidence for clinical distortion product otoacoustic emission measurements.
    Gorga MP, Stover L, Neely ST, Montoya D.
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):968-77. PubMed ID: 8759950
    [Abstract] [Full Text] [Related]

  • 73. Towards a joint reflection-distortion otoacoustic emission profile: Results in normal and impaired ears.
    Abdala C, Kalluri R.
    J Acoust Soc Am; 2017 Aug; 142(2):812. PubMed ID: 28863614
    [Abstract] [Full Text] [Related]

  • 74. A new method of measuring distortion product otoacoustic emissions using multiple tone pairs: study of human adults.
    Kim DO, Sun XM, Jung MD, Leonard G.
    Ear Hear; 1997 Aug; 18(4):277-85. PubMed ID: 9288473
    [Abstract] [Full Text] [Related]

  • 75. [DPOAE in tinnitus patients with cochlear hearing loss considering hyperacusis and misophonia].
    Sztuka A, Pośpiech L, Gawron W, Dudek K.
    Otolaryngol Pol; 2006 Aug; 60(5):765-72. PubMed ID: 17263252
    [Abstract] [Full Text] [Related]

  • 76. The use of distortion product otoacoustic emission suppression as an estimate of response growth.
    Gorga MP, Neely ST, Dorn PA, Konrad-Martin D.
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):271-84. PubMed ID: 11831801
    [Abstract] [Full Text] [Related]

  • 77. Two-tone distortion on the basilar membrane of the chinchilla cochlea.
    Robles L, Ruggero MA, Rich NC.
    J Neurophysiol; 1997 May; 77(5):2385-99. PubMed ID: 9163365
    [Abstract] [Full Text] [Related]

  • 78.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 79. Fine structure of the 2 f1-f2 acoustic distortion products: effects of primary level and frequency ratios.
    He N, Schmiedt RA.
    J Acoust Soc Am; 1997 Jun; 101(6):3554-65. PubMed ID: 9193044
    [Abstract] [Full Text] [Related]

  • 80. Deep Learning Models for Predicting Hearing Thresholds Based on Swept-Tone Stimulus-Frequency Otoacoustic Emissions.
    Liu Y, Gong Q.
    Ear Hear; 1997 Jun; 45(2):465-475. PubMed ID: 37990395
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.