These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C, Zhang Y, Hottinger DG, Jiang JJ. J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [Abstract] [Full Text] [Related]
4. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration. Berke GS, Hanson DG, Gerratt BR, Trapp TK, Macagba C, Natividad M. Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407 [Abstract] [Full Text] [Related]
9. Simulation of vocal fold impact pressures with a self-oscillating finite-element model. Tao C, Jiang JJ, Zhang Y. J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541 [Abstract] [Full Text] [Related]
10. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation. Zheng X, Bielamowicz S, Luo H, Mittal R. Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730 [Abstract] [Full Text] [Related]
17. Estimation of impact stress using an aeroelastic model of voice production. Horácek J, Laukkanen AM, Sidlof P. Logoped Phoniatr Vocol; 2007 Jun; 32(4):185-92. PubMed ID: 17990190 [Abstract] [Full Text] [Related]
18. Experimental validation of quasi-one-dimensional and two-dimensional steady glottal flow models. Cisonni J, Van Hirtum A, Luo XY, Pelorson X. Med Biol Eng Comput; 2010 Sep; 48(9):903-10. PubMed ID: 20556662 [Abstract] [Full Text] [Related]