These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
393 related items for PubMed ID: 12002868
21. Phonation threshold pressure in a physical model of the vocal fold mucosa. Titze IR, Schmidt SS, Titze MR. J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648 [Abstract] [Full Text] [Related]
22. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source. Sundberg J, Titze I, Scherer R. J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616 [Abstract] [Full Text] [Related]
24. Aerodynamic profiles of a hemilarynx with a vocal tract. Alipour F, Montequin D, Tayama N. Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846 [Abstract] [Full Text] [Related]
25. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions. Li S, Scherer RC, Wan M, Wang S, Wu H. J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956 [Abstract] [Full Text] [Related]
26. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices. Sundberg J, Fahlstedt E, Morell A. J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707 [Abstract] [Full Text] [Related]
31. A methodological study of hemilaryngeal phonation. Jiang JJ, Titze IR. Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290 [Abstract] [Full Text] [Related]
32. The effect of glottal angle on intraglottal pressure. Li S, Scherer RC, Wan M, Wang S, Wu H. J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307 [Abstract] [Full Text] [Related]
33. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds. Alipour F, Scherer RC. J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541 [Abstract] [Full Text] [Related]
34. Influence of acoustic loading on an effective single mass model of the vocal folds. Zañartu M, Mongeau L, Wodicka GR. J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533 [Abstract] [Full Text] [Related]
37. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis. Li S, Scherer RC, Wan M, Wang S. J Acoust Soc Am; 2012 Feb; 131(2):1371-7. PubMed ID: 22352510 [Abstract] [Full Text] [Related]
38. Regulating glottal airflow in phonation: application of the maximum power transfer theorem to a low dimensional phonation model. Titze IR. J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):367-76. PubMed ID: 11831809 [Abstract] [Full Text] [Related]
39. Glottal airflow resistance in excised pig, sheep, and cow larynges. Alipour F, Jaiswal S. J Voice; 2009 Jan; 23(1):40-50. PubMed ID: 18023324 [Abstract] [Full Text] [Related]
40. A Deep Learning-Based Generalized Empirical Flow Model of Glottal Flow During Normal Phonation. Zhang Y, Jiang W, Sun L, Wang J, Zheng X, Xue Q. J Biomech Eng; 2022 Sep 01; 144(9):. PubMed ID: 35171218 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]