These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
264 related items for PubMed ID: 12007801
1. Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragariaxananassa Duch.) using PCR. Rigotti S, Gindro K, Richter H, Viret O. FEMS Microbiol Lett; 2002 Apr 09; 209(2):169-74. PubMed ID: 12007801 [Abstract] [Full Text] [Related]
2. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea. Reich JD, Alexander TW, Chatterton S. Lett Appl Microbiol; 2016 May 09; 62(5):379-85. PubMed ID: 26997098 [Abstract] [Full Text] [Related]
3. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance. Rupp S, Plesken C, Rumsey S, Dowling M, Schnabel G, Weber RWS, Hahn M. Appl Environ Microbiol; 2017 May 01; 83(9):. PubMed ID: 28235878 [Abstract] [Full Text] [Related]
4. Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta. Suarez MB, Walsh K, Boonham N, O'Neill T, Pearson S, Barker I. Plant Physiol Biochem; 2005 Sep 01; 43(9):890-9. PubMed ID: 16198585 [Abstract] [Full Text] [Related]
5. Telomeric DNA of Botrytis cinerea: a useful tool for strain identification. Levis C, Giraud T, Dutertre M, Fortini D, Brygoo Y. FEMS Microbiol Lett; 1997 Dec 15; 157(2):267-72. PubMed ID: 9435107 [Abstract] [Full Text] [Related]
6. Identification and Characterization of Botrytis Blossom Blight of Japanese Plums Caused by Botrytis cinerea and B. prunorum sp. nov. in Chile. Ferrada EE, Latorre BA, Zoffoli JP, Castillo A. Phytopathology; 2016 Feb 15; 106(2):155-65. PubMed ID: 26474331 [Abstract] [Full Text] [Related]
7. Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry. Ishii H, Fountaine J, Chung WH, Kansako M, Nishimura K, Takahashi K, Oshima M. Pest Manag Sci; 2009 Aug 15; 65(8):916-22. PubMed ID: 19444805 [Abstract] [Full Text] [Related]
8. Botrytis fabiopsis, a new species causing chocolate spot of broad bean in central China. Zhang J, Wu MD, Li GQ, Yang L, Yu L, Jiang DH, Huang HC, Zhuang WY. Mycologia; 2010 Aug 15; 102(5):1114-26. PubMed ID: 20943510 [Abstract] [Full Text] [Related]
9. Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. Diguta CF, Rousseaux S, Weidmann S, Bretin N, Vincent B, Guilloux-Benatier M, Alexandre H. FEMS Microbiol Lett; 2010 Dec 15; 313(1):81-7. PubMed ID: 20946385 [Abstract] [Full Text] [Related]
10. Characterization of Botrytis cinerea from Table Grapes in Chile Using RAPD-PCR. Thompson JR, Latorre BA. Plant Dis; 1999 Dec 15; 83(12):1090-1094. PubMed ID: 30841128 [Abstract] [Full Text] [Related]
11. Identification and Prevalence of Botrytis spp. from Blackberry and Strawberry Fields of the Carolinas. Li X, Fernández-Ortuño D, Chai W, Wang F, Schnabel G. Plant Dis; 2012 Nov 15; 96(11):1634-1637. PubMed ID: 30727455 [Abstract] [Full Text] [Related]
12. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry. Grabke A, Fernández-Ortuño D, Amiri A, Li X, Peres NA, Smith P, Schnabel G. Phytopathology; 2014 Apr 15; 104(4):396-402. PubMed ID: 24156554 [Abstract] [Full Text] [Related]
13. Development of PCR-Based Assays for Detecting and Differentiating Three Species of Botrytis Infecting Broad Bean. Fan X, Zhang J, Yang L, Wu M, Chen W, Li G. Plant Dis; 2015 May 15; 99(5):691-698. PubMed ID: 30699675 [Abstract] [Full Text] [Related]
14. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Saito S, Suzuki S, Takayanagi T. Pest Manag Sci; 2009 Feb 15; 65(2):197-204. PubMed ID: 19051204 [Abstract] [Full Text] [Related]
15. Genetic characterization of grapevine-infecting Botrytis cinerea isolates from Argentina. Muñoz C, Gómez Talquenca S, Oriolani E, Combina M. Rev Iberoam Micol; 2010 Jun 30; 27(2):66-70. PubMed ID: 20346300 [Abstract] [Full Text] [Related]
16. Molecular characterization of boscalid resistance in field isolates of Botrytis cinerea from apple. Yin YN, Kim YK, Xiao CL. Phytopathology; 2011 Aug 30; 101(8):986-95. PubMed ID: 21469935 [Abstract] [Full Text] [Related]
17. Comparison of Botrytis cinerea populations isolated from two open-field cultivated host plants. Asadollahi M, Fekete E, Karaffa L, Flipphi M, Árnyasi M, Esmaeili M, Váczy KZ, Sándor E. Microbiol Res; 2013 Jul 19; 168(6):379-388. PubMed ID: 23353014 [Abstract] [Full Text] [Related]
18. Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Fournier E, Giraud T, Albertini C, Brygoo Y. Mycologia; 2005 Jul 19; 97(6):1251-67. PubMed ID: 16722218 [Abstract] [Full Text] [Related]
19. Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Yin YN, Kim YK, Xiao CL. Phytopathology; 2012 Mar 19; 102(3):315-22. PubMed ID: 22085296 [Abstract] [Full Text] [Related]
20. Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS). Zhao Y, De Coninck B, Ribeiro B, Nicolaï B, Hertog M. Int J Food Microbiol; 2023 Oct 02; 402():110313. PubMed ID: 37421873 [Abstract] [Full Text] [Related] Page: [Next] [New Search]