These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 12010556
1. Recombinant Lactococcus starters as a potential source of additional peptidolytic activity in cheese ripening. Joutsjoki V, Luoma S, Tamminen M, Kilpi M, Johansen E, Palva A. J Appl Microbiol; 2002; 92(6):1159-66. PubMed ID: 12010556 [Abstract] [Full Text] [Related]
2. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis. Luoma S, Peltoniemi K, Joutsjoki V, Rantanen T, Tamminen M, Heikkinen I, Palva A. Appl Environ Microbiol; 2001 Mar; 67(3):1232-8. PubMed ID: 11229915 [Abstract] [Full Text] [Related]
3. Influence of adjunct cultures on ripening of reduced fat Edam cheeses. Tungjaroenchai W, Drake MA, White CH. J Dairy Sci; 2001 Oct; 84(10):2117-24. PubMed ID: 11699441 [Abstract] [Full Text] [Related]
4. Proteolysis of Hispanico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639. Garde S, Avila M, Gaya P, Medina M, Nuñez M. J Dairy Sci; 2006 Mar; 89(3):840-9. PubMed ID: 16507676 [Abstract] [Full Text] [Related]
6. The contribution of lactococcal starter proteinases to proteolysis in cheddar cheese. Law J, Fitzgerald GF, Uniacke-Lowe T, Daly C, Fox PF. J Dairy Sci; 1993 Sep; 76(9):2455-67. PubMed ID: 8227650 [Abstract] [Full Text] [Related]
7. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties. Sheehan A, Cuinn GO, Fitzgerald RJ, Wilkinson MG. J Appl Microbiol; 2006 Apr; 100(4):893-901. PubMed ID: 16553747 [Abstract] [Full Text] [Related]
8. A fusion protein consisting of the exopeptidases PepN and PepX-production, characterization, and application. Stressler T, Pfahler N, Merz M, Hubschneider L, Lutz-Wahl S, Claaßen W, Fischer L. Appl Microbiol Biotechnol; 2016 Sep; 100(17):7499-515. PubMed ID: 27037692 [Abstract] [Full Text] [Related]
9. Characterization of the recombinant exopeptidases PepX and PepN from Lactobacillus helveticus ATCC 12046 important for food protein hydrolysis. Stressler T, Eisele T, Schlayer M, Lutz-Wahl S, Fischer L. PLoS One; 2013 Sep; 8(7):e70055. PubMed ID: 23894590 [Abstract] [Full Text] [Related]
10. Effect of Lactococcus lactis expressing phage endolysin on the late blowing defect of cheese caused by Clostridium tyrobutyricum. Garde S, Calzada J, Sánchez C, Gaya P, Narbad A, Meijers R, Mayer MJ, Ávila M. Int J Food Microbiol; 2020 Sep 16; 329():108686. PubMed ID: 32516659 [Abstract] [Full Text] [Related]
11. Elevated enzyme release from lactococcal starter cultures on exposure to the lantibiotic lacticin 481, produced by Lactococcus lactis DPC5552. O'Sullivan L, Morgan SM, Ross RP, Hill C. J Dairy Sci; 2002 Sep 16; 85(9):2130-40. PubMed ID: 12362444 [Abstract] [Full Text] [Related]
12. Attenuated Lactococcus lactis and Surface Bacteria as Tools for Conditioning the Microbiota and Driving the Ripening of Semisoft Caciotta Cheese. Calasso M, Minervini F, De Filippis F, Ercolini D, De Angelis M, Gobbetti M. Appl Environ Microbiol; 2020 Feb 18; 86(5):. PubMed ID: 31862717 [Abstract] [Full Text] [Related]
13. An X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis: cloning, expression in Escherichia coli, and application for removal of N-terminal Pro-Pro from recombinant proteins. Xin M, Li Y, Jie L, Min D, Liu J. Protein Expr Purif; 2002 Apr 18; 24(3):530-8. PubMed ID: 11922771 [Abstract] [Full Text] [Related]
14. Starter strain related effects on the biochemical and sensory properties of Cheddar cheese. Hickey DK, Kilcawley KN, Beresford TP, Sheehan EM, Wilkinson MG. J Dairy Res; 2007 Feb 18; 74(1):9-17. PubMed ID: 16987432 [Abstract] [Full Text] [Related]
15. Proline iminopeptidase PepI overexpressing Lactobacillus casei as an adjunct starter in Edam cheese. Navidghasemizad S, Takala TM, Alatossava T, Saris PE. Bioengineered; 2013 Feb 18; 4(6):408-12. PubMed ID: 23851577 [Abstract] [Full Text] [Related]
16. Identification of endopeptidase genes from the genomic sequence of Lactobacillus helveticus CNRZ32 and the role of these genes in hydrolysis of model bitter peptides. Sridhar VR, Hughes JE, Welker DL, Broadbent JR, Steele JL. Appl Environ Microbiol; 2005 Jun 18; 71(6):3025-32. PubMed ID: 15932998 [Abstract] [Full Text] [Related]
17. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Takala TM, Saris PE. Appl Microbiol Biotechnol; 2002 Aug 18; 59(4-5):467-71. PubMed ID: 12172611 [Abstract] [Full Text] [Related]
18. Cloning and sequencing of the gene encoding X-prolyl-dipeptidyl aminopeptidase (PepX) from Streptococcus thermophilus strain ACA-DC 4. Anastasiou R, Papadelli M, Georgalaki MD, Kalantzopoulos G, Tsakalidou E. J Appl Microbiol; 2002 Aug 18; 93(1):52-9. PubMed ID: 12067374 [Abstract] [Full Text] [Related]
19. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS. Ruggirello M, Giordano M, Bertolino M, Ferrocino I, Cocolin L, Dolci P. Food Microbiol; 2018 Sep 18; 74():132-142. PubMed ID: 29706329 [Abstract] [Full Text] [Related]
20. Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening. Hayaloglu AA, Guven M, Fox PF, McSweeney PL. J Dairy Sci; 2005 Oct 18; 88(10):3460-74. PubMed ID: 16162519 [Abstract] [Full Text] [Related] Page: [Next] [New Search]