These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 12016227

  • 1. Importance of domain closure for the catalysis and regulation of Escherichia coli aspartate transcarbamoylase.
    Macol CP, Tsuruta H, Kantrowitz ER.
    J Biol Chem; 2002 Jul 26; 277(30):26852-7. PubMed ID: 12016227
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Function of arginine-234 and aspartic acid-271 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamylase.
    Middleton SA, Kantrowitz ER.
    Biochemistry; 1988 Nov 15; 27(23):8653-60. PubMed ID: 3146350
    [Abstract] [Full Text] [Related]

  • 9. The 80s loop of the catalytic chain of Escherichia coli aspartate transcarbamoylase is critical for catalysis and homotropic cooperativity.
    Macol C, Dutta M, Stec B, Tsuruta H, Kantrowitz ER.
    Protein Sci; 1999 Jun 15; 8(6):1305-13. PubMed ID: 10386880
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains.
    Eisenstein E, Markby DW, Schachman HK.
    Proc Natl Acad Sci U S A; 1989 May 15; 86(9):3094-8. PubMed ID: 2566165
    [Abstract] [Full Text] [Related]

  • 12. A fluorescent probe-labeled Escherichia coli aspartate transcarbamoylase that monitors the allosteric conformational state.
    West JM, Tsuruta H, Kantrowitz ER.
    J Biol Chem; 2004 Jan 09; 279(2):945-51. PubMed ID: 14581486
    [Abstract] [Full Text] [Related]

  • 13. Use of L-asparagine and N-phosphonacetyl-L-asparagine to investigate the linkage of catalysis and homotropic cooperativity in E. coli aspartate transcarbomoylase.
    Cardia JP, Eldo J, Xia J, O'Day EM, Tsuruta H, Gryncel KR, Kantrowitz ER.
    Proteins; 2008 May 15; 71(3):1088-96. PubMed ID: 18004787
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. 240s loop interactions stabilize the T state of Escherichia coli aspartate transcarbamoylase.
    Alam N, Stieglitz KA, Caban MD, Gourinath S, Tsuruta H, Kantrowitz ER.
    J Biol Chem; 2004 May 28; 279(22):23302-10. PubMed ID: 15014067
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase.
    Newton CJ, Stevens RC, Kantrowitz ER.
    Biochemistry; 1992 Mar 24; 31(11):3026-32. PubMed ID: 1550826
    [Abstract] [Full Text] [Related]

  • 18. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase.
    Baker DP, Kantrowitz ER.
    Biochemistry; 1993 Sep 28; 32(38):10150-8. PubMed ID: 8104480
    [Abstract] [Full Text] [Related]

  • 19. Function of serine-52 and serine-80 in the catalytic mechanism of Escherichia coli aspartate transcarbamoylase.
    Xu W, Kantrowitz ER.
    Biochemistry; 1991 Mar 05; 30(9):2535-42. PubMed ID: 1900434
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.