These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 12018272

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose.
    Nakagame S, Chandra RP, Kadla JF, Saddler JN.
    Bioresour Technol; 2011 Mar; 102(6):4507-17. PubMed ID: 21256740
    [Abstract] [Full Text] [Related]

  • 24. Lignin-first biomass fractionation using a hybrid organosolv - Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass.
    Matsakas L, Raghavendran V, Yakimenko O, Persson G, Olsson E, Rova U, Olsson L, Christakopoulos P.
    Bioresour Technol; 2019 Feb; 273():521-528. PubMed ID: 30471644
    [Abstract] [Full Text] [Related]

  • 25. Enhanced enzymatic hydrolysis of steam-exploded Douglas fir wood by alkali-oxygen post-treatment.
    Pan X, Zhang X, Gregg DJ, Saddler JN.
    Appl Biochem Biotechnol; 2004 Feb; 113-116():1103-14. PubMed ID: 15054256
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce. Hydrolytic potential of cellulases on different substrates.
    Szengyel Z, Zacchi G, Varga A, Réczey K.
    Appl Biochem Biotechnol; 2000 Feb; 84-86():679-91. PubMed ID: 10849827
    [Abstract] [Full Text] [Related]

  • 33. Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production.
    Söderström J, Pilcher L, Galbe M, Zacchi G.
    Appl Biochem Biotechnol; 2002 Feb; 98-100():5-21. PubMed ID: 12018277
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Characterization of residual lignin after SO(2)-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips.
    Ramos LP, Mathias AL, Silva FT, Cotrim AR, Ferraz AL, Chen CL.
    J Agric Food Chem; 1999 Jun; 47(6):2295-302. PubMed ID: 10794625
    [Abstract] [Full Text] [Related]

  • 37. Optimization of chip size and moisture content to obtain high, combined sugar recovery after sulfur dioxide-catalyzed steam pretreatment of softwood and enzymatic hydrolysis of the cellulosic component.
    Olsen C, Arantes V, Saddler J.
    Bioresour Technol; 2015 Jun; 187():288-298. PubMed ID: 25863206
    [Abstract] [Full Text] [Related]

  • 38. Enhanced enzymatic hydrolysis and methane production from rubber wood waste using steam explosion.
    Eom T, Chaiprapat S, Charnnok B.
    J Environ Manage; 2019 Apr 01; 235():231-239. PubMed ID: 30684808
    [Abstract] [Full Text] [Related]

  • 39. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B, Wyman CE.
    Biotechnol Bioeng; 2006 Jul 05; 94(4):611-7. PubMed ID: 16673419
    [Abstract] [Full Text] [Related]

  • 40. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics.
    Cullis IF, Saddler JN, Mansfield SD.
    Biotechnol Bioeng; 2004 Feb 20; 85(4):413-21. PubMed ID: 14755559
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.