These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 12018304

  • 1. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling.
    Mais U, Esteghlalian AR, Saddler JN, Mansfield SD.
    Appl Biochem Biotechnol; 2002; 98-100():815-32. PubMed ID: 12018304
    [Abstract] [Full Text] [Related]

  • 2. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues.
    Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD.
    Appl Biochem Biotechnol; 2002; 98-100():641-54. PubMed ID: 12018289
    [Abstract] [Full Text] [Related]

  • 3. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility.
    Kumar L, Arantes V, Chandra R, Saddler J.
    Bioresour Technol; 2012 Jan; 103(1):201-8. PubMed ID: 22047660
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material.
    Draude KM, Kurniawan CB, Duff SJ.
    Bioresour Technol; 2001 Sep; 79(2):113-20. PubMed ID: 11480919
    [Abstract] [Full Text] [Related]

  • 6. Optimized delignification of wood-derived lignocellulosics for improved enzymatic hydrolysis.
    Cullis IF, Mansfield SD.
    Biotechnol Bioeng; 2010 Aug 15; 106(6):884-93. PubMed ID: 20506220
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates.
    Shin CS, Lee JP, Lee JS, Park SC.
    Appl Biochem Biotechnol; 2000 Aug 15; 84-86():237-45. PubMed ID: 10849792
    [Abstract] [Full Text] [Related]

  • 9. Micromorphological changes and mechanism associated with wet ball milling of Pinus radiata substrate and consequences for saccharification at low enzyme loading.
    Vaidya AA, Donaldson LA, Newman RH, Suckling ID, Campion SH, Lloyd JA, Murton KD.
    Bioresour Technol; 2016 Aug 15; 214():132-137. PubMed ID: 27131293
    [Abstract] [Full Text] [Related]

  • 10. Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings.
    Kumar L, Chandra R, Saddler J.
    Biotechnol Bioeng; 2011 Oct 15; 108(10):2300-11. PubMed ID: 21520024
    [Abstract] [Full Text] [Related]

  • 11. Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields?
    Kumar L, Chandra R, Chung PA, Saddler J.
    Bioresour Technol; 2010 Oct 15; 101(20):7827-33. PubMed ID: 20570139
    [Abstract] [Full Text] [Related]

  • 12. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates.
    Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN.
    Biotechnol Bioeng; 2002 Mar 20; 77(6):678-84. PubMed ID: 11807763
    [Abstract] [Full Text] [Related]

  • 13. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine.
    Zhu W, Zhu JY, Gleisner R, Pan XJ.
    Bioresour Technol; 2010 Apr 20; 101(8):2782-92. PubMed ID: 20006490
    [Abstract] [Full Text] [Related]

  • 14. Do enzymatic hydrolyzability and Simons' stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes?
    Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN.
    Biotechnol Prog; 2001 Apr 20; 17(6):1049-54. PubMed ID: 11735439
    [Abstract] [Full Text] [Related]

  • 15. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B, Wyman CE.
    Biotechnol Bioeng; 2006 Jul 05; 94(4):611-7. PubMed ID: 16673419
    [Abstract] [Full Text] [Related]

  • 16. Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading.
    Wang W, Kang L, Wei H, Arora R, Lee YY.
    Appl Biochem Biotechnol; 2011 Aug 05; 164(7):1139-49. PubMed ID: 21340535
    [Abstract] [Full Text] [Related]

  • 17. Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw.
    Shi F, Xiang H, Li Y.
    Bioresour Technol; 2015 Mar 05; 179():444-451. PubMed ID: 25569033
    [Abstract] [Full Text] [Related]

  • 18. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.
    Keshav PK, Naseeruddin S, Rao LV.
    Bioresour Technol; 2016 Aug 05; 214():363-370. PubMed ID: 27155264
    [Abstract] [Full Text] [Related]

  • 19. Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated Douglas-Firby novel and commercial fungal cellulases.
    Kurabi A, Berlin A, Gilkes N, Kilburn D, Bura R, Robinson J, Markov A, Skomarovsky A, Gusakov A, Okunev O, Sinitsyn A, Gregg D, Xie D, Saddler J.
    Appl Biochem Biotechnol; 2005 Aug 05; 121-124():219-30. PubMed ID: 15917601
    [Abstract] [Full Text] [Related]

  • 20. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine.
    Zhu JY, Pan XJ, Wang GS, Gleisner R.
    Bioresour Technol; 2009 Apr 05; 100(8):2411-8. PubMed ID: 19119005
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.