These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 1202194

  • 1. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord.
    Lothman EW, Somjen GG.
    J Physiol; 1975 Oct; 252(1):115-36. PubMed ID: 1202194
    [Abstract] [Full Text] [Related]

  • 2. Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures.
    Lothman EW, Somjen GG.
    Electroencephalogr Clin Neurophysiol; 1976 Sep; 41(3):253-67. PubMed ID: 60213
    [Abstract] [Full Text] [Related]

  • 3. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA.
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [Abstract] [Full Text] [Related]

  • 4. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.
    Davidoff RA, Hackman JC, Holohean AM, Vega JL, Zhang DX.
    J Physiol; 1988 Mar; 397():291-306. PubMed ID: 3261795
    [Abstract] [Full Text] [Related]

  • 5. Slow depolarizing potentials recorded from glial cells in the rat superficial dorsal horn.
    Takahashi T, Tsuruhara H.
    J Physiol; 1987 Jul; 388():597-610. PubMed ID: 2821245
    [Abstract] [Full Text] [Related]

  • 6. Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns.
    Czéh G, Kríz N, Syková E.
    J Physiol; 1981 Nov; 320():57-72. PubMed ID: 6976435
    [Abstract] [Full Text] [Related]

  • 7. Changes in extracellular potassium during the spontaneous activity of medullary respiratory neurones.
    Richter DW, Camerer H, Sonnhof U.
    Pflugers Arch; 1978 Sep 06; 376(2):139-49. PubMed ID: 568771
    [Abstract] [Full Text] [Related]

  • 8. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE, Somjen GG.
    Brain Res; 1978 Aug 04; 151(2):291-306. PubMed ID: 209864
    [Abstract] [Full Text] [Related]

  • 9. Extracellular K + activity and slow potential changes in spinal cord and medulla.
    Krnjević K, Morris ME.
    Can J Physiol Pharmacol; 1972 Dec 04; 50(12):1214-7. PubMed ID: 4655054
    [No Abstract] [Full Text] [Related]

  • 10. Extracellular ionic and volume changes: the role in glia-neuron interaction.
    Syková E, Chvátal A.
    J Chem Neuroanat; 1993 Dec 04; 6(4):247-60. PubMed ID: 8104419
    [Abstract] [Full Text] [Related]

  • 11. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N, Syková E, Vyklický L.
    J Physiol; 1975 Jul 04; 249(1):167-82. PubMed ID: 168359
    [Abstract] [Full Text] [Related]

  • 12. Potassium, sustained focal potential shifts, and dorsal root potentials of the mammalian spinal cord.
    Somjen GG, Lothman EW.
    Brain Res; 1974 Mar 29; 69(1):153-7. PubMed ID: 4817909
    [No Abstract] [Full Text] [Related]

  • 13. Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study.
    Walton KD, Chesler M.
    Neuroscience; 1988 Jun 29; 25(3):983-95. PubMed ID: 2457188
    [Abstract] [Full Text] [Related]

  • 14. Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ.
    Rosenthal M, LaManna J, Yamada S, Younts W, Somjen G.
    Brain Res; 1979 Feb 16; 162(1):113-27. PubMed ID: 761076
    [Abstract] [Full Text] [Related]

  • 15. Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume.
    Syková E.
    Can J Physiol Pharmacol; 1987 May 16; 65(5):1058-66. PubMed ID: 3621032
    [Abstract] [Full Text] [Related]

  • 16. Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain.
    Dietzel I, Heinemann U, Lux HD.
    Glia; 1989 May 16; 2(1):25-44. PubMed ID: 2523337
    [Abstract] [Full Text] [Related]

  • 17. Extracellular potassium, glial and neuronal potentials in the solitary complex of rat brainstem slices.
    Ballanyi K, Branchereau P, Champagnat J, Fortin G, Velluti J.
    Brain Res; 1993 Apr 02; 607(1-2):99-107. PubMed ID: 8097669
    [Abstract] [Full Text] [Related]

  • 18. K+ changes in the extracellular space of the spinal cord and their physiological role.
    Syková E.
    J Exp Biol; 1981 Dec 02; 95():93-109. PubMed ID: 6278046
    [Abstract] [Full Text] [Related]

  • 19. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro.
    Thompson SW, Woolf CJ, Sivilotti LG.
    J Neurophysiol; 1993 Jun 02; 69(6):2116-28. PubMed ID: 8350135
    [Abstract] [Full Text] [Related]

  • 20. Glial depolarization evokes a larger potassium accumulation around oligodendrocytes than around astrocytes in gray matter of rat spinal cord slices.
    Chvátal A, Anderová M, Ziak D, Syková E.
    J Neurosci Res; 1999 Jun 01; 56(5):493-505. PubMed ID: 10369216
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.