These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


90 related items for PubMed ID: 12022390

  • 1. Model of normothermic long-term cardiopulmonary bypass in swine weighing more than eighty kilograms.
    Belanger M, Wittnich C, Torrance S, Juhasz S.
    Comp Med; 2002 Apr; 52(2):117-21. PubMed ID: 12022390
    [Abstract] [Full Text] [Related]

  • 2. A long-term stable normothermic cardiopulmonary bypass model in neonatal swine.
    Wittnich C, Belanger MP, Wallen WJ, Torrance SM, Juhasz S.
    J Surg Res; 2001 Dec; 101(2):176-82. PubMed ID: 11735273
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Using a miniaturized circuit and an asanguineous prime to reduce neutrophil-mediated organ dysfunction following infant cardiopulmonary bypass.
    Karamlou T, Schultz JM, Silliman C, Sandquist C, You J, Shen I, Ungerleider RM.
    Ann Thorac Surg; 2005 Jul; 80(1):6-13; discussion 13-4. PubMed ID: 15975331
    [Abstract] [Full Text] [Related]

  • 5. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro LJ.
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Limiting edema in neonatal cardiopulmonary bypass with narrow-range molecular weight hydroxyethyl starch.
    Yeh T, Parmar JM, Rebeyka IM, Lofland GK, Allen EL, Dignan RJ, Dyke CM, Wechsler AS.
    J Thorac Cardiovasc Surg; 1992 Sep; 104(3):659-65. PubMed ID: 1381029
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Is hyperglycemia seen in children during cardiopulmonary bypass a result of hyperoxia?
    Bandali KS, Belanger MP, Wittnich C.
    J Thorac Cardiovasc Surg; 2001 Oct; 122(4):753-8. PubMed ID: 11581609
    [Abstract] [Full Text] [Related]

  • 10. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M, Plank C, Meissner U, Eberle KP, Weyand M, Cesnjevar R, Dötsch J, Rascher W.
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [Abstract] [Full Text] [Related]

  • 11. A rat model of cardiopulmonary bypass with cardioplegic arrest and hemodynamic assessment by conductance catheter technique.
    Günzinger R, Wildhirt SM, Schad H, Heimisch W, Gurdan M, Mendler N, Grammer J, Lange R, Bauernschmitt R.
    Basic Res Cardiol; 2007 Nov; 102(6):508-17. PubMed ID: 17668258
    [Abstract] [Full Text] [Related]

  • 12. Modified aortic cannulation for cardiopulmonary bypass in neonatal piglet model.
    Tirilomis T, Paz D, Nolte L, Schoendube FA.
    J Card Surg; 2008 Nov; 23(5):503-4. PubMed ID: 18928487
    [Abstract] [Full Text] [Related]

  • 13. Good recovery after nontransthoracic cardiopulmonary bypass in rats.
    An Y, Xiao Y, Zhong Q.
    Heart Surg Forum; 2007 Nov; 10(1):E73-7. PubMed ID: 17311769
    [Abstract] [Full Text] [Related]

  • 14. Hemodilutional anemia impairs neurologic outcome after cardiopulmonary bypass in a piglet model.
    Miura T, Sakamoto T, Kobayashi M, Shin'oka T, Kurosawa H.
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):29-36. PubMed ID: 17198777
    [Abstract] [Full Text] [Related]

  • 15. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass.
    Soller BR, Idwasi PO, Balaguer J, Levin S, Simsir SA, Vander Salm TJ, Collette H, Heard SO.
    Crit Care Med; 2003 Sep; 31(9):2324-31. PubMed ID: 14501963
    [Abstract] [Full Text] [Related]

  • 16. Low-dose ketamine combined with pentobarbital in a miniature porcine model for a cardiopulmonary bypass procedure: a randomized controlled study.
    Liu D, Hu J, Zhang M, Shao Y, Xue H, Wu Q.
    Eur J Anaesthesiol; 2009 May; 26(5):389-95. PubMed ID: 19521295
    [Abstract] [Full Text] [Related]

  • 17. Mechanisms of a reduced cardiac output and the effects of milrinone and levosimendan in a model of infant cardiopulmonary bypass.
    Stocker CF, Shekerdemian LS, Nørgaard MA, Brizard CP, Mynard JP, Horton SB, Penny DJ.
    Crit Care Med; 2007 Jan; 35(1):252-9. PubMed ID: 17133188
    [Abstract] [Full Text] [Related]

  • 18. A rat model of cardiopulmonary bypass with excellent survival.
    Dong GH, Xu B, Wang CT, Qian JJ, Liu H, Huang G, Jing H.
    J Surg Res; 2005 Feb; 123(2):171-5. PubMed ID: 15680374
    [Abstract] [Full Text] [Related]

  • 19. Inhibition of thrombin during reperfusion improves immediate postischemic myocardial function and modulates apoptosis in a porcine model of cardiopulmonary bypass.
    Jormalainen M, Vento AE, Lukkarinen H, Kääpä P, Kytö V, Lauronen J, Paavonen T, Suojaranta-Ylinen R, Petäjä J.
    J Cardiothorac Vasc Anesth; 2007 Apr; 21(2):224-31. PubMed ID: 17418736
    [Abstract] [Full Text] [Related]

  • 20. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease: results of a randomized trial and real-time monitoring.
    Sakamoto T, Kurosawa H, Shin'oka T, Aoki M, Isomatsu Y.
    J Thorac Cardiovasc Surg; 2004 Jan; 127(1):12-9. PubMed ID: 14752407
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.