These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 12023864
1. An acetyl group deficit limits mitochondrial ATP production at the onset of exercise. Greenhaff PL, Campbell-O'Sullivan SP, Constantin-Teodosiu D, Poucher SM, Roberts PA, Timmons JA. Biochem Soc Trans; 2002 Apr; 30(2):275-80. PubMed ID: 12023864 [Abstract] [Full Text] [Related]
2. Acetyl-CoA provision and the acetyl group deficit at the onset of contraction in ischemic canine skeletal muscle. Roberts PA, Loxham SJ, Poucher SM, Constantin-Teodosiu D, Greenhaff PL. Am J Physiol Endocrinol Metab; 2005 Feb; 288(2):E327-34. PubMed ID: 15454400 [Abstract] [Full Text] [Related]
3. Metabolic inertia in contracting skeletal muscle: a novel approach for pharmacological intervention in peripheral vascular disease. Greenhaff PL, Campbell-O'Sullivan SP, Constantin-Teodosiu D, Poucher SM, Roberts PA, Timmons JA. Br J Clin Pharmacol; 2004 Mar; 57(3):237-43. PubMed ID: 14998419 [Abstract] [Full Text] [Related]
4. Skeletal muscle metabolism is unaffected by DCA infusion and hyperoxia after onset of intense aerobic exercise. Savasi I, Evans MK, Heigenhauser GJ, Spriet LL. Am J Physiol Endocrinol Metab; 2002 Jul; 283(1):E108-15. PubMed ID: 12067850 [Abstract] [Full Text] [Related]
5. Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise. Timmons JA, Gustafsson T, Sundberg CJ, Jansson E, Hultman E, Kaijser L, Chwalbinska-Moneta J, Constantin-Teodosiu D, Macdonald IA, Greenhaff PL. J Clin Invest; 1998 Jan 01; 101(1):79-85. PubMed ID: 9421469 [Abstract] [Full Text] [Related]
6. Muscle acetyl group availability is a major determinant of oxygen deficit in humans during submaximal exercise. Timmons JA, Gustafsson T, Sundberg CJ, Jansson E, Greenhaff PL. Am J Physiol; 1998 Feb 01; 274(2):E377-80. PubMed ID: 9486171 [Abstract] [Full Text] [Related]
7. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles. Korzeniewski B, Zoladz JA. Biochem J; 2004 May 01; 379(Pt 3):703-10. PubMed ID: 14744260 [Abstract] [Full Text] [Related]
8. The acetyl group deficit at the onset of contraction in ischaemic canine skeletal muscle. Roberts PA, Loxham SJ, Poucher SM, Constantin-Teodosiu D, Greenhaff PL. J Physiol; 2002 Oct 15; 544(2):591-602. PubMed ID: 12381829 [Abstract] [Full Text] [Related]
9. No acetyl group deficit is evident at the onset of exercise at 90% of maximal oxygen uptake in humans. Marwood S, Constantin-Teodosiu D, Casey E, Whyte M, Boobis L, Bowtell J. J Sports Sci; 2010 Oct 15; 28(3):267-79. PubMed ID: 20087812 [Abstract] [Full Text] [Related]
10. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Spriet LL, Heigenhauser GJ. Exerc Sport Sci Rev; 2002 Apr 15; 30(2):91-5. PubMed ID: 11991544 [Abstract] [Full Text] [Related]
11. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Korzeniewski B, Liguzinski P. Biophys Chem; 2004 Jul 01; 110(1-2):147-69. PubMed ID: 15223151 [Abstract] [Full Text] [Related]
12. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Jacobsen EB, Hamberg O, Quistorff B, Ott P. Hepatology; 2001 Jul 01; 34(1):7-12. PubMed ID: 11431727 [Abstract] [Full Text] [Related]
13. Introduction to respiratory control in skeletal muscle. Starnes JW. Med Sci Sports Exerc; 1994 Jan 01; 26(1):27-9. PubMed ID: 8133734 [Abstract] [Full Text] [Related]
14. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms. Zoladz JA, Korzeniewski B, Grassi B. J Physiol Pharmacol; 2006 Nov 01; 57 Suppl 10():67-84. PubMed ID: 17242492 [Abstract] [Full Text] [Related]
15. Effects of PDH activation by dichloroacetate in human skeletal muscle during exercise in hypoxia. Parolin ML, Spriet LL, Hultman E, Matsos MP, Hollidge-Horvat MG, Jones NL, Heigenhauser GJ. Am J Physiol Endocrinol Metab; 2000 Oct 01; 279(4):E752-61. PubMed ID: 11001755 [Abstract] [Full Text] [Related]
16. Skeletal muscle metabolism during high-intensity sprint exercise is unaffected by dichloroacetate or acetate infusion. Howlett RA, Heigenhauser GJ, Spriet LL. J Appl Physiol (1985); 1999 Nov 01; 87(5):1747-51. PubMed ID: 10562618 [Abstract] [Full Text] [Related]
17. Acetyl group availability influences phosphocreatine degradation even during intense muscle contraction. Timmons JA, Constantin-Teodosiu D, Poucher SM, Greenhaff PL. J Physiol; 2004 Dec 15; 561(Pt 3):851-9. PubMed ID: 15498812 [Abstract] [Full Text] [Related]
18. Endotoxemia does not limit energy supply in exercising rat skeletal muscle. Giannesini B, Izquierdo M, Dalmasso C, Le Fur Y, Cozzone PJ, Verleye M, Le Guern ME, Gillardin JM, Bendahan D. Muscle Nerve; 2008 Apr 15; 37(4):496-504. PubMed ID: 18260074 [Abstract] [Full Text] [Related]
19. Energy expenditure of heavy to severe exercise and recovery. Scott CB. J Theor Biol; 2000 Nov 21; 207(2):293-7. PubMed ID: 11034835 [Abstract] [Full Text] [Related]
20. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. Stephens FB, Constantin-Teodosiu D, Greenhaff PL. J Physiol; 2007 Jun 01; 581(Pt 2):431-44. PubMed ID: 17331998 [Abstract] [Full Text] [Related] Page: [Next] [New Search]