These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 12028580

  • 1. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center.
    García-Borrón JC, Solano F.
    Pigment Cell Res; 2002 Jun; 15(3):162-73. PubMed ID: 12028580
    [Abstract] [Full Text] [Related]

  • 2. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C, Solano F.
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [Abstract] [Full Text] [Related]

  • 3. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in Mammalian tyrosinase. Implications to the catalytic cycle.
    Olivares C, García-Borrón JC, Solano F.
    Biochemistry; 2002 Jan 15; 41(2):679-86. PubMed ID: 11781109
    [Abstract] [Full Text] [Related]

  • 4. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
    Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M.
    J Biol Chem; 2006 Mar 31; 281(13):8981-90. PubMed ID: 16436386
    [Abstract] [Full Text] [Related]

  • 5. Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation.
    Fujieda N, Yabuta S, Ikeda T, Oyama T, Muraki N, Kurisu G, Itoh S.
    J Biol Chem; 2013 Jul 26; 288(30):22128-40. PubMed ID: 23749993
    [Abstract] [Full Text] [Related]

  • 6. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities.
    Noh H, Lee SJ, Jo HJ, Choi HW, Hong S, Kong KH.
    J Enzyme Inhib Med Chem; 2020 Dec 26; 35(1):726-732. PubMed ID: 32180482
    [Abstract] [Full Text] [Related]

  • 7. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins.
    Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW.
    Chemistry; 2018 Jan 02; 24(1):47-55. PubMed ID: 29052256
    [Abstract] [Full Text] [Related]

  • 8. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.
    Hassan M, Abbas Q, Raza H, Moustafa AA, Seo SY.
    Mol Biosyst; 2017 Jul 25; 13(8):1534-1544. PubMed ID: 28640309
    [Abstract] [Full Text] [Related]

  • 9. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa.
    Aguilera F, McDougall C, Degnan BM.
    BMC Evol Biol; 2013 May 01; 13():96. PubMed ID: 23634722
    [Abstract] [Full Text] [Related]

  • 10. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis.
    Nakamura M, Nakajima T, Ohba Y, Yamauchi S, Lee BR, Ichishima E.
    Biochem J; 2000 Sep 01; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969
    [Abstract] [Full Text] [Related]

  • 11. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2.
    Agarwal P, Singh J, Singh RP.
    Appl Biochem Biotechnol; 2017 May 01; 182(1):1-15. PubMed ID: 27826808
    [Abstract] [Full Text] [Related]

  • 12. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
    Ismaya WT, Rozeboom HJ, Weijn A, Mes JJ, Fusetti F, Wichers HJ, Dijkstra BW.
    Biochemistry; 2011 Jun 21; 50(24):5477-86. PubMed ID: 21598903
    [Abstract] [Full Text] [Related]

  • 13. Scaffolded amino acids as a close structural mimic of type-3 copper binding sites.
    Albada HB, Soulimani F, Weckhuysen BM, Liskamp RM.
    Chem Commun (Camb); 2007 Dec 14; (46):4895-7. PubMed ID: 18361361
    [Abstract] [Full Text] [Related]

  • 14. First structures of an active bacterial tyrosinase reveal copper plasticity.
    Sendovski M, Kanteev M, Ben-Yosef VS, Adir N, Fishman A.
    J Mol Biol; 2011 Jan 07; 405(1):227-37. PubMed ID: 21040728
    [Abstract] [Full Text] [Related]

  • 15. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H, Tuczek F.
    Trends Biochem Sci; 2000 Aug 07; 25(8):392-7. PubMed ID: 10916160
    [Abstract] [Full Text] [Related]

  • 16. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
    Matoba Y, Kihara S, Muraki Y, Bando N, Yoshitsu H, Kuroda T, Sakaguchi M, Kayama K, Tai H, Hirota S, Ogura T, Sugiyama M.
    Biochemistry; 2017 Oct 17; 56(41):5593-5603. PubMed ID: 28902505
    [Abstract] [Full Text] [Related]

  • 17. Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
    Goldfeder M, Kanteev M, Adir N, Fishman A.
    Biochim Biophys Acta; 2013 Mar 17; 1834(3):629-33. PubMed ID: 23305929
    [Abstract] [Full Text] [Related]

  • 18. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C, Mauracher SG, Rompel A.
    Adv Protein Chem Struct Biol; 2014 Mar 17; 97():1-35. PubMed ID: 25458353
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y, Oda K, Muraki Y, Masuda T.
    Int J Biol Macromol; 2021 Jul 31; 183():1861-1870. PubMed ID: 34089758
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.