These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 12028636

  • 1. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators.
    Neuman DG, Stauffer PR, Jacobsen S, Rossetto F.
    Int J Hyperthermia; 2002; 18(3):180-93. PubMed ID: 12028636
    [Abstract] [Full Text] [Related]

  • 2. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation.
    Rossetto F, Diederich CJ, Stauffer PR.
    Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697
    [Abstract] [Full Text] [Related]

  • 3. Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators. Specific absorption rate.
    Rossetto F, Stauffer PR.
    IEEE Trans Biomed Eng; 1999 Nov; 46(11):1310-9. PubMed ID: 10582416
    [Abstract] [Full Text] [Related]

  • 4. Effect of practical layered dielectric loads on SAR patterns from dual concentric conductor microstrip antennas.
    Rossetto F, Stauffer PR, Manfrini V, Diederich CJ, Biffi Gentili G.
    Int J Hyperthermia; 1998 Nov; 14(6):553-71. PubMed ID: 9886662
    [Abstract] [Full Text] [Related]

  • 5. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F, Stauffer PR.
    Int J Hyperthermia; 2001 Nov; 17(3):258-70. PubMed ID: 11347730
    [Abstract] [Full Text] [Related]

  • 6. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC, Sherar MD.
    Int J Hyperthermia; 2002 Nov; 18(5):441-53. PubMed ID: 12227930
    [Abstract] [Full Text] [Related]

  • 7. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR, Rossetto F, Leoncini M, Gentilli GB.
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. FDTD simulations of Clini-Therm applicators on inhomogeneous planar tissue models.
    Chan KW, McDougall JA, Chou CK.
    Int J Hyperthermia; 1995 May; 11(6):809-20. PubMed ID: 8586902
    [Abstract] [Full Text] [Related]

  • 10. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC, Sherar MD.
    Phys Med Biol; 2003 Jan 07; 48(1):1-18. PubMed ID: 12564497
    [Abstract] [Full Text] [Related]

  • 11. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC, Sherar MD.
    Int J Hyperthermia; 2002 Jan 07; 18(5):426-40. PubMed ID: 12227929
    [Abstract] [Full Text] [Related]

  • 12. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ, Stauffer PR.
    Int J Hyperthermia; 1993 Jan 07; 9(2):227-46. PubMed ID: 8468507
    [Abstract] [Full Text] [Related]

  • 13. FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators. Finite-difference time-domain.
    Gentili GB, Leoncini M, Trembly BS, Schweizer SE.
    IEEE Trans Biomed Eng; 1995 Oct 07; 42(10):973-80. PubMed ID: 8582727
    [Abstract] [Full Text] [Related]

  • 14. Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence.
    Arunachalam K, Maccarini PF, Craciunescu OI, Schlorff JL, Stauffer PR.
    Phys Med Biol; 2010 Apr 07; 55(7):1949-69. PubMed ID: 20224154
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia.
    Johnson JE, Neuman DG, Maccarini PF, Juang T, Stauffer PR, Turner P.
    Int J Hyperthermia; 2006 Sep 07; 22(6):475-90. PubMed ID: 16971368
    [Abstract] [Full Text] [Related]

  • 16. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G, Arunachalam K.
    Int J Hyperthermia; 2015 Sep 07; 31(7):737-48. PubMed ID: 26365603
    [Abstract] [Full Text] [Related]

  • 17. A variable microwave array attenuator for use with single-element waveguide applicators.
    Sherar MD, Clark H, Cooper B, Kumaradas J, Liu FF.
    Int J Hyperthermia; 1994 Sep 07; 10(5):723-31. PubMed ID: 7806927
    [Abstract] [Full Text] [Related]

  • 18. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
    Kok HP, De Greef M, Correia D, Vörding PJ, Van Stam G, Gelvich EA, Bel A, Crezee J.
    Int J Hyperthermia; 2009 Sep 07; 25(6):462-76. PubMed ID: 19657850
    [Abstract] [Full Text] [Related]

  • 19. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J, Klautke G, Seegenschmiedt HM, Engelbrecht R, Schaller G, Sauer R.
    Strahlenther Onkol; 1994 Nov 07; 170(11):654-64. PubMed ID: 7974181
    [Abstract] [Full Text] [Related]

  • 20. Microwave applicator for hyperthermia treatment on in vivo melanoma model.
    Togni P, Vrba J, Vannucci L.
    Med Biol Eng Comput; 2010 Mar 07; 48(3):285-92. PubMed ID: 20033789
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.