These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 12038638
1. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material. Les CM, Stover SM, Keyak JH, Taylor KT, Kaneps AJ. J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638 [Abstract] [Full Text] [Related]
3. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. Martin RB, Stover SM, Gibson VA, Gibeling JC, Griffin LV. J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774 [Abstract] [Full Text] [Related]
4. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content. Kotha SP, Guzelsu N. J Biomech; 2007 Sep; 40(1):36-45. PubMed ID: 16434048 [Abstract] [Full Text] [Related]
7. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. Currey JD. J Biomech; 2004 Apr; 37(4):549-56. PubMed ID: 14996567 [Abstract] [Full Text] [Related]
10. Fatigue behavior of the equine third metacarpus: mechanical property analysis. Gibson VA, Stover SM, Martin RB, Gibeling JC, Willits NH, Gustafson MB, Griffin LV. J Orthop Res; 1995 Nov; 13(6):861-8. PubMed ID: 8544022 [Abstract] [Full Text] [Related]
11. The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Yeni YN, Dong XN, Fyhrie DP, Les CM. Biomed Mater Eng; 2004 Nov; 14(3):303-10. PubMed ID: 15299242 [Abstract] [Full Text] [Related]
12. Evidence of structural and material adaptation to specific strain features in cortical bone. Skedros JG, Mason MW, Nelson MC, Bloebaum RD. Anat Rec; 1996 Sep; 246(1):47-63. PubMed ID: 8876823 [Abstract] [Full Text] [Related]
13. The effect of strain rate on the mechanical properties of human cortical bone. Hansen U, Zioupos P, Simpson R, Currey JD, Hynd D. J Biomech Eng; 2008 Feb; 130(1):011011. PubMed ID: 18298187 [Abstract] [Full Text] [Related]
14. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. Zioupos P, Hansen U, Currey JD. J Biomech; 2008 Oct 20; 41(14):2932-9. PubMed ID: 18786670 [Abstract] [Full Text] [Related]
15. The mechanical properties of cranial bone: the effect of loading rate and cranial sampling position. Motherway JA, Verschueren P, Van der Perre G, Vander Sloten J, Gilchrist MD. J Biomech; 2009 Sep 18; 42(13):2129-35. PubMed ID: 19640538 [Abstract] [Full Text] [Related]
16. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, Christiansen C, Delmas PD. Bone; 2006 Mar 18; 38(3):300-9. PubMed ID: 16271523 [Abstract] [Full Text] [Related]
17. Damage in trabecular bone at small strains. Morgan EF, Yeh OC, Keaveny TM. Eur J Morphol; 2005 Mar 18; 42(1-2):13-21. PubMed ID: 16123020 [Abstract] [Full Text] [Related]