These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 12043835

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone.
    Kamber D, Erez H, Spira ME.
    Exp Neurol; 2009 Sep; 219(1):112-25. PubMed ID: 19442660
    [Abstract] [Full Text] [Related]

  • 3. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons.
    Spira ME, Oren R, Dormann A, Gitler D.
    J Comp Neurol; 2003 Mar 10; 457(3):293-312. PubMed ID: 12541311
    [Abstract] [Full Text] [Related]

  • 4. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I, Khoutorsky A, Erez H, Prager-Khoutorsky M, Spira ME.
    J Comp Neurol; 2006 Feb 10; 494(5):705-20. PubMed ID: 16374810
    [Abstract] [Full Text] [Related]

  • 5. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy.
    Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME.
    J Cell Biol; 2007 Feb 12; 176(4):497-507. PubMed ID: 17283182
    [Abstract] [Full Text] [Related]

  • 6. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation.
    Gitler D, Spira ME.
    Neuron; 1998 Jun 12; 20(6):1123-35. PubMed ID: 9655501
    [Abstract] [Full Text] [Related]

  • 7. Short window of opportunity for calpain induced growth cone formation after axotomy of Aplysia neurons.
    Gitler D, Spira ME.
    J Neurobiol; 2002 Sep 15; 52(4):267-79. PubMed ID: 12210094
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones.
    Erez H, Spira ME.
    J Comp Neurol; 2008 Mar 01; 507(1):1019-30. PubMed ID: 18092341
    [Abstract] [Full Text] [Related]

  • 11. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury.
    Geddis MS, Rehder V.
    J Neurosci Res; 2003 Oct 15; 74(2):210-20. PubMed ID: 14515350
    [Abstract] [Full Text] [Related]

  • 12. The role of conditioning factors in the formation of growth cones and neurites from the axon stump after axotomy.
    Williams DK, Cohan CS.
    Brain Res Dev Brain Res; 1994 Aug 12; 81(1):89-104. PubMed ID: 7805290
    [Abstract] [Full Text] [Related]

  • 13. Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones.
    Ziv NE, Spira ME.
    J Neurosci; 1997 May 15; 17(10):3568-79. PubMed ID: 9133380
    [Abstract] [Full Text] [Related]

  • 14. Clustering of excess growth resources within leading growth cones underlies the recurrent "deposition" of varicosities along developing neurites.
    Malkinson G, Spira ME.
    Exp Neurol; 2010 Sep 15; 225(1):140-53. PubMed ID: 20558161
    [Abstract] [Full Text] [Related]

  • 15. Rho GTPases: role in dendrite and axonal growth, mental retardation, and axonal regeneration.
    Benarroch EE.
    Neurology; 2007 Apr 17; 68(16):1315-8. PubMed ID: 17438224
    [No Abstract] [Full Text] [Related]

  • 16. Assembly of a new growth cone after axotomy: the precursor to axon regeneration.
    Bradke F, Fawcett JW, Spira ME.
    Nat Rev Neurosci; 2012 Feb 15; 13(3):183-93. PubMed ID: 22334213
    [Abstract] [Full Text] [Related]

  • 17. Neuronal cytoskeleton in synaptic plasticity and regeneration.
    Gordon-Weeks PR, Fournier AE.
    J Neurochem; 2014 Apr 15; 129(2):206-12. PubMed ID: 24147810
    [Abstract] [Full Text] [Related]

  • 18. NCS-1 differentially regulates growth cone and somata calcium channels in Lymnaea neurons.
    Hui K, Feng ZP.
    Eur J Neurosci; 2008 Feb 15; 27(3):631-43. PubMed ID: 18279316
    [Abstract] [Full Text] [Related]

  • 19. STIM1 Is Required for Remodeling of the Endoplasmic Reticulum and Microtubule Cytoskeleton in Steering Growth Cones.
    Pavez M, Thompson AC, Arnott HJ, Mitchell CB, D'Atri I, Don EK, Chilton JK, Scott EK, Lin JY, Young KM, Gasperini RJ, Foa L.
    J Neurosci; 2019 Jun 26; 39(26):5095-5114. PubMed ID: 31023836
    [Abstract] [Full Text] [Related]

  • 20. Actin-binding proteins take the reins in growth cones.
    Pak CW, Flynn KC, Bamburg JR.
    Nat Rev Neurosci; 2008 Feb 26; 9(2):136-47. PubMed ID: 18209731
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.