These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
358 related items for PubMed ID: 12049741
1. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF. Mol Cell; 2002 May; 9(5):1055-65. PubMed ID: 12049741 [Abstract] [Full Text] [Related]
2. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D. Curr Biol; 2005 Aug 09; 15(15):1364-75. PubMed ID: 16085488 [Abstract] [Full Text] [Related]
5. A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1. Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP. Mol Cell Biol; 2004 Dec 09; 24(23):10126-44. PubMed ID: 15542824 [Abstract] [Full Text] [Related]
6. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Sun Z, Hsiao J, Fay DS, Stern DF. Science; 1998 Jul 10; 281(5374):272-4. PubMed ID: 9657725 [Abstract] [Full Text] [Related]
7. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Chen ES, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD. Mol Cell Proteomics; 2014 Feb 10; 13(2):551-65. PubMed ID: 24302356 [Abstract] [Full Text] [Related]
9. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. Liao H, Yuan C, Su MI, Yongkiettrakul S, Qin D, Li H, Byeon IJ, Pei D, Tsai MD. J Mol Biol; 2000 Dec 15; 304(5):941-51. PubMed ID: 11124038 [Abstract] [Full Text] [Related]
11. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. Lee SJ, Schwartz MF, Duong JK, Stern DF. Mol Cell Biol; 2003 Sep 15; 23(17):6300-14. PubMed ID: 12917350 [Abstract] [Full Text] [Related]
12. Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase. Kim EM, Jang YK, Park SD. Nucleic Acids Res; 2002 Feb 01; 30(3):643-8. PubMed ID: 11809875 [Abstract] [Full Text] [Related]
13. A domain of Rad9 specifically required for activation of Chk1 in budding yeast. Blankley RT, Lydall D. J Cell Sci; 2004 Feb 01; 117(Pt 4):601-8. PubMed ID: 14709724 [Abstract] [Full Text] [Related]
14. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Jia X, Weinert T, Lydall D. Genetics; 2004 Feb 01; 166(2):753-64. PubMed ID: 15020465 [Abstract] [Full Text] [Related]
16. The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53. Usui T, Petrini JH. Proc Natl Acad Sci U S A; 2007 Feb 20; 104(8):2797-802. PubMed ID: 17299042 [Abstract] [Full Text] [Related]
17. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae. Pike BL, Yongkiettrakul S, Tsai MD, Heierhorst J. Mol Cell Biol; 2004 Apr 20; 24(7):2779-88. PubMed ID: 15024067 [Abstract] [Full Text] [Related]
18. Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Usui T, Foster SS, Petrini JH. Mol Cell; 2009 Jan 30; 33(2):147-59. PubMed ID: 19187758 [Abstract] [Full Text] [Related]
19. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Sanchez Y, Bachant J, Wang H, Hu F, Liu D, Tetzlaff M, Elledge SJ. Science; 1999 Nov 05; 286(5442):1166-71. PubMed ID: 10550056 [Abstract] [Full Text] [Related]