These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 12051467

  • 21. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo.
    Lo AC, Saab CY, Black JA, Waxman SG.
    J Neurophysiol; 2003 Nov; 90(5):3566-71. PubMed ID: 12904334
    [Abstract] [Full Text] [Related]

  • 22. A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis.
    Shields SD, Cheng X, Gasser A, Saab CY, Tyrrell L, Eastman EM, Iwata M, Zwinger PJ, Black JA, Dib-Hajj SD, Waxman SG.
    Ann Neurol; 2012 Feb; 71(2):186-94. PubMed ID: 22367990
    [Abstract] [Full Text] [Related]

  • 23. Remyelination of dorsal column axons by endogenous Schwann cells restores the normal pattern of Nav1.6 and Kv1.2 at nodes of Ranvier.
    Black JA, Waxman SG, Smith KJ.
    Brain; 2006 May; 129(Pt 5):1319-29. PubMed ID: 16537565
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Membranes, myelin, and the pathophysiology of multiple sclerosis.
    Waxman SG.
    N Engl J Med; 1982 Jun 24; 306(25):1529-33. PubMed ID: 7043271
    [No Abstract] [Full Text] [Related]

  • 30. Axonal protection in multiple sclerosis--a particular need during remyelination?
    Smith KJ.
    Brain; 2006 Dec 24; 129(Pt 12):3147-9. PubMed ID: 17132643
    [No Abstract] [Full Text] [Related]

  • 31. Na+ channel expression along axons in multiple sclerosis and its models.
    Waxman SG, Craner MJ, Black JA.
    Trends Pharmacol Sci; 2004 Nov 24; 25(11):584-91. PubMed ID: 15491781
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Up-regulation of slow K(+) channels in peripheral motor axons: a transcriptional channelopathy in multiple sclerosis.
    Ng K, Howells J, Pollard JD, Burke D.
    Brain; 2008 Nov 24; 131(Pt 11):3062-71. PubMed ID: 18697908
    [Abstract] [Full Text] [Related]

  • 36. Insights into the molecular pathogenesis of progression in multiple sclerosis: potential implications for future therapies.
    Imitola J, Chitnis T, Khoury SJ.
    Arch Neurol; 2006 Jan 24; 63(1):25-33. PubMed ID: 16401734
    [Abstract] [Full Text] [Related]

  • 37. Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons.
    Rush AM, Craner MJ, Kageyama T, Dib-Hajj SD, Waxman SG, Ranscht B.
    Eur J Neurosci; 2005 Jul 24; 22(1):39-49. PubMed ID: 16029194
    [Abstract] [Full Text] [Related]

  • 38. Fatigue in multiple sclerosis: mechanisms and management.
    Vucic S, Burke D, Kiernan MC.
    Clin Neurophysiol; 2010 Jun 24; 121(6):809-17. PubMed ID: 20100665
    [Abstract] [Full Text] [Related]

  • 39. Ion channel subunit expression changes in cardiac Purkinje fibers: a potential role in conduction abnormalities associated with congestive heart failure.
    Maguy A, Le Bouter S, Comtois P, Chartier D, Villeneuve L, Wakili R, Nishida K, Nattel S.
    Circ Res; 2009 May 08; 104(9):1113-22. PubMed ID: 19359601
    [Abstract] [Full Text] [Related]

  • 40. Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy.
    Smith KJ.
    Brain Pathol; 2007 Apr 08; 17(2):230-42. PubMed ID: 17388954
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.