These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 12051679

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Purification and characterization of the flavoprotein tryptophan 2-monooxygenase expressed at high levels in Escherichia coli.
    Emanuele JJ, Heasley CJ, Fitzpatrick PF.
    Arch Biochem Biophys; 1995 Jan 10; 316(1):241-8. PubMed ID: 7840624
    [Abstract] [Full Text] [Related]

  • 4. Identification of Tyr413 as an active site residue in the flavoprotein tryptophan 2-monooxygenase and analysis of its contribution to catalysis.
    Sobrado P, Fitzpatrick PF.
    Biochemistry; 2003 Dec 02; 42(47):13833-8. PubMed ID: 14636050
    [Abstract] [Full Text] [Related]

  • 5. Analysis of the role of the active site residue Arg98 in the flavoprotein tryptophan 2-monooxygenase, a member of the L-amino oxidase family.
    Sobrado P, Fitzpatrick PF.
    Biochemistry; 2003 Dec 02; 42(47):13826-32. PubMed ID: 14636049
    [Abstract] [Full Text] [Related]

  • 6. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase.
    Zhang Y, Deshpande A, Xie Z, Natesh R, Acharya KR, Brew K.
    Glycobiology; 2004 Dec 02; 14(12):1295-302. PubMed ID: 15229192
    [Abstract] [Full Text] [Related]

  • 7. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV, Zakomirdina LN, Kulikova VV, Dementieva IS, Faleev NG, Ronda L, Mozzarelli A, Gollnick PD, Phillips RS.
    Biochemistry; 2003 Sep 30; 42(38):11161-9. PubMed ID: 14503866
    [Abstract] [Full Text] [Related]

  • 8. Role of the amino acid invariants in the active site of MurG as evaluated by site-directed mutagenesis.
    Crouvoisier M, Auger G, Blanot D, Mengin-Lecreulx D.
    Biochimie; 2007 Dec 30; 89(12):1498-508. PubMed ID: 17692452
    [Abstract] [Full Text] [Related]

  • 9. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK, Keeffe JR, Kast P, Mayo SL.
    Biochemistry; 2007 Jun 12; 46(23):6883-91. PubMed ID: 17506527
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J, Khandogin J, West AH, Cook PF.
    Biochemistry; 2008 Jul 01; 47(26):6851-8. PubMed ID: 18533686
    [Abstract] [Full Text] [Related]

  • 12. Characterization of putative tryptophan monooxygenase from Ralstonia solanacearum [corrected].
    Kurosawa N, Hirata T, Suzuki H.
    J Biochem; 2009 Jul 01; 146(1):23-32. PubMed ID: 19304791
    [Abstract] [Full Text] [Related]

  • 13. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M, Chen X, Wu XH, Chen M, Wu YD, Guo Z.
    Biochemistry; 2009 Jul 28; 48(29):6921-31. PubMed ID: 19545176
    [Abstract] [Full Text] [Related]

  • 14. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase.
    Ziegler K, Noble SM, Mutumanje E, Bishop B, Huddler DP, Born TL.
    Biochemistry; 2007 Mar 13; 46(10):2674-83. PubMed ID: 17302437
    [Abstract] [Full Text] [Related]

  • 15. Identification of the five essential histidine residues for peptidylglycine monooxygenase.
    Yonekura H, Anzai T, Kato I, Furuya Y, Shizuta S, Takasawa S, Okamoto H.
    Biochem Biophys Res Commun; 1996 Jan 17; 218(2):495-9. PubMed ID: 8561784
    [Abstract] [Full Text] [Related]

  • 16. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver.
    Cervellati C, Dallocchio F, Bergamini CM, Cook PF.
    Biochemistry; 2005 Feb 22; 44(7):2432-40. PubMed ID: 15709755
    [Abstract] [Full Text] [Related]

  • 17. The catalytic role of the copper ligand H172 of peptidylglycine alpha-hydroxylating monooxygenase: a kinetic study of the H172A mutant.
    Evans JP, Blackburn NJ, Klinman JP.
    Biochemistry; 2006 Dec 26; 45(51):15419-29. PubMed ID: 17176064
    [Abstract] [Full Text] [Related]

  • 18. Investigation of the catalytic and structural roles of conserved histidines of human coproporphyrinogen oxidase using site-directed mutagenesis.
    Gitter SJ, Cooper CL, Friesen JA, Jones MA.
    Med Sci Monit; 2007 Jan 26; 13(1):BR1-10. PubMed ID: 17179900
    [Abstract] [Full Text] [Related]

  • 19. Role of tryptophan, histidine and methionine residues in the catalytic activity of mitochondrial aspartate aminotransferase from beef kidney.
    Polidoro G, di Cola D, di Ilio C, del Boccio G, Politi L, Scandurra R.
    Physiol Chem Phys; 1975 Jan 26; 7(3):255-61. PubMed ID: 1187815
    [Abstract] [Full Text] [Related]

  • 20. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants.
    Li C, Montgomery MG, Mohammed F, Li JJ, Wood SP, Bugg TD.
    J Mol Biol; 2005 Feb 11; 346(1):241-51. PubMed ID: 15663941
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.