These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


379 related items for PubMed ID: 12052904

  • 1. Auditory system development: primary auditory neurons and their targets.
    Rubel EW, Fritzsch B.
    Annu Rev Neurosci; 2002; 25():51-101. PubMed ID: 12052904
    [Abstract] [Full Text] [Related]

  • 2. Differential expression of Eph receptors and ephrins in the cochlear ganglion and eighth cranial nerve of the chick embryo.
    Siddiqui SA, Cramer KS.
    J Comp Neurol; 2005 Feb 21; 482(4):309-19. PubMed ID: 15669077
    [Abstract] [Full Text] [Related]

  • 3. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation.
    Elliott KL, Kersigo J, Pan N, Jahan I, Fritzsch B.
    Front Neural Circuits; 2017 Feb 21; 11():25. PubMed ID: 28450830
    [Abstract] [Full Text] [Related]

  • 4. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.
    Tong L, Strong MK, Kaur T, Juiz JM, Oesterle EC, Hume C, Warchol ME, Palmiter RD, Rubel EW.
    J Neurosci; 2015 May 20; 35(20):7878-91. PubMed ID: 25995473
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats.
    Bailey EM, Green SH.
    J Neurosci; 2014 Sep 24; 34(39):13110-26. PubMed ID: 25253857
    [Abstract] [Full Text] [Related]

  • 7. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.
    Howell DM, Morgan WJ, Jarjour AA, Spirou GA, Berrebi AS, Kennedy TE, Mathers PH.
    J Comp Neurol; 2007 Oct 10; 504(5):533-49. PubMed ID: 17701984
    [Abstract] [Full Text] [Related]

  • 8. Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma.
    Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, Hadjab S, Zimmermann U, Köpschall I, Rohbock K, Knipper M.
    Neuroscience; 2007 Mar 16; 145(2):715-26. PubMed ID: 17275194
    [Abstract] [Full Text] [Related]

  • 9. Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro.
    Kuenzel T, Wirth MJ, Luksch H, Wagner H, Mey J.
    Brain Res; 2009 Dec 11; 1302():64-75. PubMed ID: 19766604
    [Abstract] [Full Text] [Related]

  • 10. Postnatal refinement of auditory nerve projections to the cochlear nucleus in cats.
    Leake PA, Snyder RL, Hradek GT.
    J Comp Neurol; 2002 Jun 17; 448(1):6-27. PubMed ID: 12012373
    [Abstract] [Full Text] [Related]

  • 11. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear.
    Zhang KD, Coate TM.
    Semin Cell Dev Biol; 2017 May 17; 65():80-87. PubMed ID: 27760385
    [Abstract] [Full Text] [Related]

  • 12. NT-3 combined with CNTF promotes survival of neurons in modiolus-spiral ganglion explants.
    Staecker H, Liu W, Hartnick C, Lefebvre P, Malgrange B, Moonen G, Van de Water TR.
    Neuroreport; 1995 Jul 31; 6(11):1533-7. PubMed ID: 7579142
    [Abstract] [Full Text] [Related]

  • 13. Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells.
    Coate TM, Kelley MW.
    Semin Cell Dev Biol; 2013 May 31; 24(5):460-9. PubMed ID: 23660234
    [Abstract] [Full Text] [Related]

  • 14. Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea.
    Echteler SM, Magardino T, Rontal M.
    Brain Res Dev Brain Res; 2005 Jun 30; 157(2):192-200. PubMed ID: 15939482
    [Abstract] [Full Text] [Related]

  • 15. Cochlear afferent innervation development.
    Delacroix L, Malgrange B.
    Hear Res; 2015 Dec 30; 330(Pt B):157-69. PubMed ID: 26231304
    [Abstract] [Full Text] [Related]

  • 16. Role of phosphatase and tensin homolog in the development of the mammalian auditory system.
    Dong Y, Sui L, Yamaguchi F, Kamitori K, Hirata Y, Suzuki A, Holley M, Tokuda M.
    Neuroreport; 2010 Jul 14; 21(10):731-5. PubMed ID: 20531234
    [Abstract] [Full Text] [Related]

  • 17. Development of glutamate receptors in auditory neurons from long-term organotypic cultures of the embryonic chick hindbrain.
    Diaz C, Martinez-Galan JR, Juiz JM.
    Eur J Neurosci; 2009 Jan 14; 29(2):213-30. PubMed ID: 19200228
    [Abstract] [Full Text] [Related]

  • 18. Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells.
    Brugeaud A, Tong M, Luo L, Edge AS.
    Dev Neurobiol; 2014 Apr 14; 74(4):457-66. PubMed ID: 24123853
    [Abstract] [Full Text] [Related]

  • 19. Talking back: Development of the olivocochlear efferent system.
    Frank MM, Goodrich LV.
    Wiley Interdiscip Rev Dev Biol; 2018 Nov 14; 7(6):e324. PubMed ID: 29944783
    [Abstract] [Full Text] [Related]

  • 20. Morphological differentiation of tau-green fluorescent protein embryonic stem cells into neurons after co-culture with auditory brain stem slices.
    Glavaski-Joksimovic A, Thonabulsombat C, Wendt M, Eriksson M, Ma H, Olivius P.
    Neuroscience; 2009 Aug 18; 162(2):472-81. PubMed ID: 19410633
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.