These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


100 related items for PubMed ID: 12062448

  • 1. Evidence for glucose-6-phosphate transport in rat liver microsomes.
    Gerin I, Van Schaftingen E.
    FEBS Lett; 2002 Apr 24; 517(1-3):257-60. PubMed ID: 12062448
    [Abstract] [Full Text] [Related]

  • 2. Cooperativity between 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the lumen of the endoplasmic reticulum.
    Bánhegyi G, Benedetti A, Fulceri R, Senesi S.
    J Biol Chem; 2004 Jun 25; 279(26):27017-21. PubMed ID: 15090536
    [Abstract] [Full Text] [Related]

  • 3. The glucose-6-phosphate transporter-hexose-6-phosphate dehydrogenase-11beta-hydroxysteroid dehydrogenase type 1 system of the adipose tissue.
    Marcolongo P, Piccirella S, Senesi S, Wunderlich L, Gerin I, Mandl J, Fulceri R, Bánhegyi G, Benedetti A.
    Endocrinology; 2007 May 25; 148(5):2487-95. PubMed ID: 17303657
    [Abstract] [Full Text] [Related]

  • 4. Inhibition of microsomal glucose-6-phosphate transport in human neutrophils results in apoptosis: a potential explanation for neutrophil dysfunction in glycogen storage disease type 1b.
    Leuzzi R, Bánhegyi G, Kardon T, Marcolongo P, Capecchi PL, Burger HJ, Benedetti A, Fulceri R.
    Blood; 2003 Mar 15; 101(6):2381-7. PubMed ID: 12424192
    [Abstract] [Full Text] [Related]

  • 5. Evidence that adrenal hexose-6-phosphate dehydrogenase can effect microsomal P450 cytochrome steroidogenic enzymes.
    Foster CA, Mick GJ, Wang X, McCormick K.
    Biochim Biophys Acta; 2013 Sep 15; 1833(9):2039-44. PubMed ID: 23665046
    [Abstract] [Full Text] [Related]

  • 6. Characterization of sulfate transport in the hepatic endoplasmic reticulum.
    Csala M, Senesi S, Bánhegyi G, Mandl J, Benedetti A.
    Arch Biochem Biophys; 2005 Aug 15; 440(2):173-80. PubMed ID: 16055076
    [Abstract] [Full Text] [Related]

  • 7. Demonstration of a metabolically active glucose-6-phosphate pool in the lumen of liver microsomal vesicles.
    Bánhegyi G, Marcolongo P, Fulceri R, Hinds C, Burchell A, Benedetti A.
    J Biol Chem; 1997 May 23; 272(21):13584-90. PubMed ID: 9153206
    [Abstract] [Full Text] [Related]

  • 8. Novel arguments in favor of the substrate-transport model of glucose-6-phosphatase.
    Gerin I, Noël G, Van Schaftingen E.
    Diabetes; 2001 Jul 23; 50(7):1531-8. PubMed ID: 11423473
    [Abstract] [Full Text] [Related]

  • 9. Metabolic Coupling Determines the Activity: Comparison of 11β-Hydroxysteroid Dehydrogenase 1 and Its Coupling between Liver Parenchymal Cells and Testicular Leydig Cells.
    Li X, Hu G, Li X, Wang YY, Hu YY, Zhou H, Latif SA, Morris DJ, Chu Y, Zheng Z, Ge RS.
    PLoS One; 2015 Jul 23; 10(11):e0141767. PubMed ID: 26528718
    [Abstract] [Full Text] [Related]

  • 10. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase.
    Parker JC, VanVolkenburg MA, Levy CB, Martin WH, Burk SH, Kwon Y, Giragossian C, Gant TG, Carpino PA, McPherson RK, Vestergaard P, Treadway JL.
    Diabetes; 1998 Oct 23; 47(10):1630-6. PubMed ID: 9753303
    [Abstract] [Full Text] [Related]

  • 11. Hexose-6-phosphate and 6-phosphogluconate dehydrogenases of rat liver microsomes. Involvement in NADPH and carbon dioxide generation in the luminal space of microsomal vesicles.
    Hino Y, Minakami S.
    J Biochem; 1982 Aug 23; 92(2):547-57. PubMed ID: 6813321
    [Abstract] [Full Text] [Related]

  • 12. The glucose-6-phosphate transport is not mediated by a glucose-6-phosphate/phosphate exchange in liver microsomes.
    Marcolongo P, Fulceri R, Giunti R, Margittai E, Banhegyi G, Benedetti A.
    FEBS Lett; 2012 Sep 21; 586(19):3354-9. PubMed ID: 22819816
    [Abstract] [Full Text] [Related]

  • 13. An integrated view of the kinetics of glucose and phosphate transport, and of glucose 6-phosphate transport and hydrolysis in intact rat liver microsomes.
    Xie W, van de Werve G, Berteloot A.
    J Membr Biol; 2001 Jan 15; 179(2):113-26. PubMed ID: 11220362
    [Abstract] [Full Text] [Related]

  • 14. Direct evidence for the involvement of two glucose 6-phosphate-binding sites in the glucose-6-phosphatase activity of intact liver microsomes. Characterization of T1, the microsomal glucose 6-phosphate transport protein by a direct binding assay.
    Arion WJ, Canfield WK, Callaway ES, Burger HJ, Hemmerle H, Schubert G, Herling AW, Oekonomopulos R.
    J Biol Chem; 1998 Mar 13; 273(11):6223-7. PubMed ID: 9497346
    [Abstract] [Full Text] [Related]

  • 15. N-Bromoacetylethanolamine phosphate as a probe for the identification of a liver microsomal glucose-6-phosphate transporter peptide in rats and Ehrlich ascites tumor-bearing mice.
    Foster JD, Stevens AL, Nordlie RC.
    Arch Biochem Biophys; 2000 May 01; 377(1):115-21. PubMed ID: 10775449
    [Abstract] [Full Text] [Related]

  • 16. Evidence that the transit of glucose into liver microsomes is not required for functional glucose-6-phosphatase.
    Annabi B, van de Werve G.
    Biochem Biophys Res Commun; 1997 Jul 30; 236(3):808-13. PubMed ID: 9245738
    [Abstract] [Full Text] [Related]

  • 17. The levels of nicotinamide nucleotides in liver microsomes and their possible significance to the function of hexose phosphate dehydrogenase.
    Bublitz C, Lawler CA.
    Biochem J; 1987 Jul 01; 245(1):263-7. PubMed ID: 2822015
    [Abstract] [Full Text] [Related]

  • 18. Intramembraneous localization of rat liver microsomal hexose-6-phosphate dehydrogenase and membrane permeability to its substrates.
    Takahashi T, Hori SH.
    Biochim Biophys Acta; 1978 Jun 09; 524(2):262-76. PubMed ID: 27221
    [Abstract] [Full Text] [Related]

  • 19. Possible functional coupling of hexose-6-phosphate dehydrogenase to microsomal electron transport system in rat kidney and liver.
    Kodama T, Hori SH.
    Biochim Biophys Acta; 1982 Apr 13; 715(2):151-61. PubMed ID: 7074135
    [Abstract] [Full Text] [Related]

  • 20. Maintenance of luminal NADPH in the endoplasmic reticulum promotes the survival of human neutrophil granulocytes.
    Kardon T, Senesi S, Marcolongo P, Legeza B, Bánhegyi G, Mandl J, Fulceri R, Benedetti A.
    FEBS Lett; 2008 Jun 11; 582(13):1809-15. PubMed ID: 18472006
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.