These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Preferential inhibition of lactate oxidation relative to glucose oxidation in the rat heart following diabetes. Chatham JC, Gao ZP, Bonen A, Forder JR. Cardiovasc Res; 1999 Jul; 43(1):96-106. PubMed ID: 10536694 [Abstract] [Full Text] [Related]
4. Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Lloyd S, Brocks C, Chatham JC. Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H163-72. PubMed ID: 12793977 [Abstract] [Full Text] [Related]
6. Onset of diabetes in Zucker diabetic fatty (ZDF) rats leads to improved recovery of function after ischemia in the isolated perfused heart. Wang P, Chatham JC. Am J Physiol Endocrinol Metab; 2004 May; 286(5):E725-36. PubMed ID: 14722022 [Abstract] [Full Text] [Related]
9. Assessment of myocardial metabolism in diabetic rats using small-animal PET: a feasibility study. Welch MJ, Lewis JS, Kim J, Sharp TL, Dence CS, Gropler RJ, Herrero P. J Nucl Med; 2006 Apr; 47(4):689-97. PubMed ID: 16595504 [Abstract] [Full Text] [Related]
10. Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode. Vincent G, Khairallah M, Bouchard B, Des Rosiers C. Mol Cell Biochem; 2003 Jan; 242(1-2):89-99. PubMed ID: 12619870 [Abstract] [Full Text] [Related]
12. Different types of postinsulin receptor defects contribute to insulin resistance in hearts of obese Zucker rats. Rösen P, Herberg L, Reinauer H. Endocrinology; 1986 Sep; 119(3):1285-91. PubMed ID: 3732168 [Abstract] [Full Text] [Related]
13. Cardiac metabolic modulation upon low-carbohydrate low-protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized 13 C pyruvate, butyrate and acetoacetate probes. Abdurrachim D, Teo XQ, Woo CC, Ong SY, Salleh NF, Lalic J, Tan RS, Lee PTH. Diabetes Obes Metab; 2019 Apr; 21(4):949-960. PubMed ID: 30536560 [Abstract] [Full Text] [Related]
14. Reduced effects of L-carnitine on glucose and fatty acid metabolism in myocytes isolated from diabetic rats. Abdel-aleem S, Karim AM, Zarouk WA, Taylor DA, el-Awady MK, Lowe JE. Horm Metab Res; 1997 Sep; 29(9):430-5. PubMed ID: 9370110 [Abstract] [Full Text] [Related]
15. A 13C-NMR study of glucose oxidation in the intact functioning rat heart following diabetes-induced cardiomyopathy. Chatham JC, Forder JR. J Mol Cell Cardiol; 1993 Oct; 25(10):1203-13. PubMed ID: 8263954 [Abstract] [Full Text] [Related]
16. Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons. Khairallah M, Labarthe F, Bouchard B, Danialou G, Petrof BJ, Des Rosiers C. Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1461-70. PubMed ID: 14670819 [Abstract] [Full Text] [Related]
17. Myocardial metabolism of triacylglycerol-rich lipoproteins in type 2 diabetes. Niu YG, Evans RD. J Physiol; 2009 Jul 01; 587(Pt 13):3301-15. PubMed ID: 19433573 [Abstract] [Full Text] [Related]
19. Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Golfman LS, Wilson CR, Sharma S, Burgmaier M, Young ME, Guthrie PH, Van Arsdall M, Adrogue JV, Brown KK, Taegtmeyer H. Am J Physiol Endocrinol Metab; 2005 Aug 01; 289(2):E328-36. PubMed ID: 15797988 [Abstract] [Full Text] [Related]