These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 12065310
1. H+-peptide cotransport in the human bile duct epithelium cell line SK-ChA-1. Knütter I, Rubio-Aliaga I, Boll M, Hause G, Daniel H, Neubert K, Brandsch M. Am J Physiol Gastrointest Liver Physiol; 2002 Jul; 283(1):G222-9. PubMed ID: 12065310 [Abstract] [Full Text] [Related]
2. Delta-aminolevulinic acid transport in cancer cells of the human extrahepatic biliary duct. Neumann J, Brandsch M. J Pharmacol Exp Ther; 2003 Apr; 305(1):219-24. PubMed ID: 12649372 [Abstract] [Full Text] [Related]
3. Characterization of rPEPT2-mediated Gly-Sar transport parameters in the rat kidney proximal tubule cell line SKPT-0193 cl.2 cultured in basic growth media. Bravo SA, Nielsen CU, Frokjaer S, Brodin B. Mol Pharm; 2005 Apr; 2(2):98-108. PubMed ID: 15804184 [Abstract] [Full Text] [Related]
4. Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. Guo A, Hu P, Balimane PV, Leibach FH, Sinko PJ. J Pharmacol Exp Ther; 1999 Apr; 289(1):448-54. PubMed ID: 10087037 [Abstract] [Full Text] [Related]
5. Transport of the phosphonodipeptide alafosfalin by the H+/peptide cotransporters PEPT1 and PEPT2 in intestinal and renal epithelial cells. Neumann J, Bruch M, Gebauer S, Brandsch M. Eur J Biochem; 2004 May; 271(10):2012-7. PubMed ID: 15128310 [Abstract] [Full Text] [Related]
6. PEPT1 involved in the uptake and transepithelial transport of cefditoren in vivo and in vitro. Zhang Q, Liu Q, Wu J, Wang C, Peng J, Ma X, Liu K. Eur J Pharmacol; 2009 Jun 10; 612(1-3):9-14. PubMed ID: 19371738 [Abstract] [Full Text] [Related]
7. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH. Biochem Biophys Res Commun; 1998 May 19; 246(2):470-5. PubMed ID: 9610386 [Abstract] [Full Text] [Related]
8. Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters. Knütter I, Hartrodt B, Tóth G, Keresztes A, Kottra G, Mrestani-Klaus C, Born I, Daniel H, Neubert K, Brandsch M. FEBS J; 2007 Nov 19; 274(22):5905-14. PubMed ID: 17944948 [Abstract] [Full Text] [Related]
9. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Nakanishi T, Tamai I, Sai Y, Sasaki T, Tsuji A. Cancer Res; 1997 Sep 15; 57(18):4118-22. PubMed ID: 9307302 [Abstract] [Full Text] [Related]
10. sigma Receptor ligand-induced up-regulation of the H(+)/peptide transporter PEPT1 in the human intestinal cell line Caco-2. Fujita T, Majikawa Y, Umehisa S, Okada N, Yamamoto A, Ganapathy V, Leibach FH. Biochem Biophys Res Commun; 1999 Aug 02; 261(2):242-6. PubMed ID: 10425172 [Abstract] [Full Text] [Related]
11. Uptake of cyclic dipeptide by PEPT1 in Caco-2 cells: phenolic hydroxyl group of substrate enhances affinity for PEPT1. Mizuma T, Narasaka T, Awazu S. J Pharm Pharmacol; 2002 Sep 02; 54(9):1293-6. PubMed ID: 12356285 [Abstract] [Full Text] [Related]
12. Characterization of stably transfected kidney epithelial cell line expressing rat H+/peptide cotransporter PEPT1: localization of PEPT1 and transport of beta-lactam antibiotics. Terada T, Saito H, Mukai M, Inui K. J Pharmacol Exp Ther; 1997 Jun 02; 281(3):1415-21. PubMed ID: 9190878 [Abstract] [Full Text] [Related]
13. Gene ablation for PEPT1 in mice abolishes the effects of dipeptides on small intestinal fluid absorption, short-circuit current, and intracellular pH. Chen M, Singh A, Xiao F, Dringenberg U, Wang J, Engelhardt R, Yeruva S, Rubio-Aliaga I, Nässl AM, Kottra G, Daniel H, Seidler U. Am J Physiol Gastrointest Liver Physiol; 2010 Jul 02; 299(1):G265-74. PubMed ID: 20430876 [Abstract] [Full Text] [Related]
14. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Shu C, Shen H, Hopfer U, Smith DE. Drug Metab Dispos; 2001 Oct 02; 29(10):1307-15. PubMed ID: 11560874 [Abstract] [Full Text] [Related]
15. PEPT2 (Slc15a2)-mediated unidirectional transport of cefadroxil from cerebrospinal fluid into choroid plexus. Shen H, Keep RF, Hu Y, Smith DE. J Pharmacol Exp Ther; 2005 Dec 02; 315(3):1101-8. PubMed ID: 16107517 [Abstract] [Full Text] [Related]
16. High-affinity interaction of sartans with H+/peptide transporters. Knütter I, Kottra G, Fischer W, Daniel H, Brandsch M. Drug Metab Dispos; 2009 Jan 02; 37(1):143-9. PubMed ID: 18824524 [Abstract] [Full Text] [Related]
17. Distinct transport characteristics of basolateral peptide transporters between MDCK and Caco-2 cells. Sawada K, Terada T, Saito H, Inui K. Pflugers Arch; 2001 Oct 02; 443(1):31-7. PubMed ID: 11692263 [Abstract] [Full Text] [Related]
18. Epidermal growth factor and insulin short-term increase hPepT1-mediated glycylsarcosine uptake in Caco-2 cells. Nielsen CU, Amstrup J, Nielsen R, Steffansen B, Frokjaer S, Brodin B. Acta Physiol Scand; 2003 Jun 02; 178(2):139-48. PubMed ID: 12780388 [Abstract] [Full Text] [Related]
19. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers. Gukasyan HJ, Lee VH, Kim KJ, Kannan R. Invest Ophthalmol Vis Sci; 2002 Apr 02; 43(4):1154-61. PubMed ID: 11923260 [Abstract] [Full Text] [Related]
20. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. Döring F, Walter J, Will J, Föcking M, Boll M, Amasheh S, Clauss W, Daniel H. J Clin Invest; 1998 Jun 15; 101(12):2761-7. PubMed ID: 9637710 [Abstract] [Full Text] [Related] Page: [Next] [New Search]