These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1601 related items for PubMed ID: 12065724

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J, Markerink-van Ittersum M, Vles JS.
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [Abstract] [Full Text] [Related]

  • 3. Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram.
    Michie AM, Lobban M, Müller T, Harnett MM, Houslay MD.
    Cell Signal; 1996 Feb; 8(2):97-110. PubMed ID: 8730511
    [Abstract] [Full Text] [Related]

  • 4. The effects of phosphodiesterase inhibition on cyclic GMP and cyclic AMP accumulation in the hippocampus of the rat.
    van Staveren WC, Markerink-van Ittersum M, Steinbusch HW, de Vente J.
    Brain Res; 2001 Jan 12; 888(2):275-286. PubMed ID: 11150485
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of cyclic AMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism.
    Zhang HT, Crissman AM, Dorairaj NR, Chandler LJ, O'Donnell JM.
    Neuropsychopharmacology; 2000 Aug 12; 23(2):198-204. PubMed ID: 10882846
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Changes in phosphodiesterase activity in the developing rat submandibular gland.
    Tanaka S, Shimooka S, Shimomura H.
    Arch Oral Biol; 2002 Aug 12; 47(8):567-76. PubMed ID: 12221013
    [Abstract] [Full Text] [Related]

  • 9. Comparative involvement of cyclic nucleotide phosphodiesterases and adenylyl cyclase on adrenocorticotropin-induced increase of cyclic adenosine monophosphate in rat and human glomerulosa cells.
    Côté M, Payet MD, Rousseau E, Guillon G, Gallo-Payet N.
    Endocrinology; 1999 Aug 12; 140(8):3594-601. PubMed ID: 10433216
    [Abstract] [Full Text] [Related]

  • 10. Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic-3',5'-guanosine monophosphate-stimulated phosphodiesterase to reverse hypoxic pulmonary vasoconstriction in the perfused rat lung.
    Haynes J, Killilea DW, Peterson PD, Thompson WJ.
    J Pharmacol Exp Ther; 1996 Feb 12; 276(2):752-7. PubMed ID: 8632346
    [Abstract] [Full Text] [Related]

  • 11. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC, Garthwaite J.
    Mol Pharmacol; 2001 Jan 12; 59(1):54-61. PubMed ID: 11125024
    [Abstract] [Full Text] [Related]

  • 12. High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC- and soluble GC-cGMP-PDE3 signaling in rabbit atria.
    Wen JF, Cui X, Jin JY, Kim SM, Kim SZ, Kim SH, Lee HS, Cho KW.
    Circ Res; 2004 Apr 16; 94(7):936-43. PubMed ID: 14988225
    [Abstract] [Full Text] [Related]

  • 13. cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes.
    Rivet-Bastide M, Vandecasteele G, Hatem S, Verde I, Bénardeau A, Mercadier JJ, Fischmeister R.
    J Clin Invest; 1997 Jun 01; 99(11):2710-8. PubMed ID: 9169501
    [Abstract] [Full Text] [Related]

  • 14. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis.
    Richter W, Unciuleac L, Hermsdorf T, Kronbach T, Dettmer D.
    Cell Signal; 2001 Mar 01; 13(3):159-67. PubMed ID: 11282454
    [Abstract] [Full Text] [Related]

  • 15. Attenuation of cAMP accumulation in adult rat cardiac fibroblasts by IL-1beta and NO: role of cGMP-stimulated PDE2.
    Gustafsson AB, Brunton LL.
    Am J Physiol Cell Physiol; 2002 Aug 01; 283(2):C463-71. PubMed ID: 12107056
    [Abstract] [Full Text] [Related]

  • 16. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE, Lugnier C.
    Br J Pharmacol; 1994 Oct 01; 113(2):445-50. PubMed ID: 7834194
    [Abstract] [Full Text] [Related]

  • 17. Phosphodiesterase inhibition by a gastroprotective agent irsogladine: preferential blockade of cAMP hydrolysis.
    Kyoi T, Oka M, Noda K, Ukai Y.
    Life Sci; 2004 Aug 27; 75(15):1833-42. PubMed ID: 15302227
    [Abstract] [Full Text] [Related]

  • 18. Phosphodiesterases do not limit beta1-adrenoceptor-mediated sinoatrial tachycardia: evidence with PDE3 and PDE4 in rabbits and PDE1-5 in rats.
    Kaumann AJ, Galindo-Tovar A, Escudero E, Vargas ML.
    Naunyn Schmiedebergs Arch Pharmacol; 2009 Nov 27; 380(5):421-30. PubMed ID: 19693491
    [Abstract] [Full Text] [Related]

  • 19. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P, Lugnier C, Demesy-Waeldele F, Stoclet JC.
    Biochem Pharmacol; 1987 Nov 15; 36(22):3965-72. PubMed ID: 2825708
    [Abstract] [Full Text] [Related]

  • 20. Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases.
    Manns JM, Brenna KJ, Colman RW, Sheth SB.
    Thromb Haemost; 2002 May 15; 87(5):873-9. PubMed ID: 12038792
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 81.