These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 12069581
1. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Futaki S, Nakase I, Suzuki T, Youjun Z, Sugiura Y. Biochemistry; 2002 Jun 25; 41(25):7925-30. PubMed ID: 12069581 [Abstract] [Full Text] [Related]
2. Structural variety of membrane permeable peptides. Futaki S, Goto S, Suzuki T, Nakase I, Sugiura Y. Curr Protein Pept Sci; 2003 Apr 25; 4(2):87-96. PubMed ID: 12678848 [Abstract] [Full Text] [Related]
4. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Futaki S. Adv Drug Deliv Rev; 2005 Feb 28; 57(4):547-58. PubMed ID: 15722163 [Abstract] [Full Text] [Related]
5. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Futaki S. Int J Pharm; 2002 Oct 01; 245(1-2):1-7. PubMed ID: 12270237 [Abstract] [Full Text] [Related]
6. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. J Biol Chem; 2001 Feb 23; 276(8):5836-40. PubMed ID: 11084031 [Abstract] [Full Text] [Related]
7. Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms. Futaki S. Biopolymers; 2006 Feb 23; 84(3):241-9. PubMed ID: 16333858 [Abstract] [Full Text] [Related]
8. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Calnan BJ, Biancalana S, Hudson D, Frankel AD. Genes Dev; 1991 Feb 23; 5(2):201-10. PubMed ID: 1899841 [Abstract] [Full Text] [Related]
9. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. Proc Natl Acad Sci U S A; 2000 Nov 21; 97(24):13003-8. PubMed ID: 11087855 [Abstract] [Full Text] [Related]
10. TAT peptide internalization: seeking the mechanism of entry. Vivès E, Richard JP, Rispal C, Lebleu B. Curr Protein Pept Sci; 2003 Apr 21; 4(2):125-32. PubMed ID: 12678851 [Abstract] [Full Text] [Related]
11. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Vivès E, Brodin P, Lebleu B. J Biol Chem; 1997 Jun 20; 272(25):16010-7. PubMed ID: 9188504 [Abstract] [Full Text] [Related]
12. Stearylated arginine-rich peptides: a new class of transfection systems. Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K, Harashima H, Sugiura Y. Bioconjug Chem; 2001 Jun 20; 12(6):1005-11. PubMed ID: 11716693 [Abstract] [Full Text] [Related]
13. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Sugiura Y, Futaki S. Biochemistry; 2007 Jan 16; 46(2):492-501. PubMed ID: 17209559 [Abstract] [Full Text] [Related]
14. Translocation of a beta-peptide across cell membranes. Umezawa N, Gelman MA, Haigis MC, Raines RT, Gellman SH. J Am Chem Soc; 2002 Jan 23; 124(3):368-9. PubMed ID: 11792194 [Abstract] [Full Text] [Related]
15. Selective side-chain modification of cysteine and arginine residues blocks pathogenic activity of HIV-1-Tat functional peptides. Devadas K, Boykins RA, Hardegen NJ, Philp D, Kleinman HK, Osa EO, Wang J, Clouse KA, Wahl LM, Hewlett IK, Rappaport J, Yamada KM, Dhawan S. Peptides; 2006 Apr 23; 27(4):611-21. PubMed ID: 16256245 [Abstract] [Full Text] [Related]
16. Membrane binding and translocation of cell-penetrating peptides. Thorén PE, Persson D, Esbjörner EK, Goksör M, Lincoln P, Nordén B. Biochemistry; 2004 Mar 30; 43(12):3471-89. PubMed ID: 15035618 [Abstract] [Full Text] [Related]
17. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, Rebolledo A, Milesi V. Biophys J; 2009 Oct 07; 97(7):1917-25. PubMed ID: 19804722 [Abstract] [Full Text] [Related]
18. Arginine-rich membrane-permeable peptides are seriously toxic. Li Q, Xu M, Cui Y, Huang C, Sun M. Pharmacol Res Perspect; 2017 Oct 07; 5(5):. PubMed ID: 28971613 [Abstract] [Full Text] [Related]
19. Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro-inverso Tat cell penetrating peptide. Zhang X, Jin Y, Plummer MR, Pooyan S, Gunaseelan S, Sinko PJ. Mol Pharm; 2009 Oct 07; 6(3):836-48. PubMed ID: 19278221 [Abstract] [Full Text] [Related]
20. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Kawamura KS, Sung M, Bolewska-Pedyczak E, Gariépy J. Biochemistry; 2006 Jan 31; 45(4):1116-27. PubMed ID: 16430208 [Abstract] [Full Text] [Related] Page: [Next] [New Search]