These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 12080125
1. Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains. Sharpe S, Barber KR, Grant CW, Goodyear D, Morrow MR. Biophys J; 2002 Jul; 83(1):345-58. PubMed ID: 12080125 [Abstract] [Full Text] [Related]
2. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Jones DH, Barber KR, VanDerLoo EW, Grant CW. Biochemistry; 1998 Nov 24; 37(47):16780-7. PubMed ID: 9843449 [Abstract] [Full Text] [Related]
3. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP, Lewis RN, Hodges RS, McElhaney RN. Biophys J; 1995 Mar 24; 68(3):847-57. PubMed ID: 7756552 [Abstract] [Full Text] [Related]
4. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers. Sharpe S, Barber KR, Grant CW. Biochemistry; 2000 May 30; 39(21):6572-80. PubMed ID: 10828974 [Abstract] [Full Text] [Related]
5. The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes. Morrow MR, Grant CW. Biophys J; 2000 Oct 30; 79(4):2024-32. PubMed ID: 11023906 [Abstract] [Full Text] [Related]
6. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA, Salemink I, de Planque MR, Lindblom G, Koeppe RE, Greathouse DV. Biochemistry; 1996 Jan 23; 35(3):1037-45. PubMed ID: 8547239 [Abstract] [Full Text] [Related]
7. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Harzer U, Bechinger B. Biochemistry; 2000 Oct 31; 39(43):13106-14. PubMed ID: 11052662 [Abstract] [Full Text] [Related]
8. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP, Lewis RN, Hodges RS, McElhaney RN. Biochemistry; 2001 Jan 16; 40(2):474-82. PubMed ID: 11148042 [Abstract] [Full Text] [Related]
9. Molecular dynamics simulation of transmembrane polypeptide orientational fluctuations. Goodyear DJ, Sharpe S, Grant CW, Morrow MR. Biophys J; 2005 Jan 16; 88(1):105-17. PubMed ID: 15489306 [Abstract] [Full Text] [Related]
10. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR, Greathouse DV, Koeppe RE, Schäfer H, Marsh D, Killian JA. Biochemistry; 1998 Jun 30; 37(26):9333-45. PubMed ID: 9649314 [Abstract] [Full Text] [Related]
11. Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane alpha-helical peptides with alternating leucine and alanine residues. Subczynski WK, Pasenkiewicz-Gierula M, McElhaney RN, Hyde JS, Kusumi A. Biochemistry; 2003 Apr 08; 42(13):3939-48. PubMed ID: 12667085 [Abstract] [Full Text] [Related]
12. Evidence of a tendency to self-association of the transmembrane domain of ErbB-2 in fluid phospholipid bilayers. Sharpe S, Barber KR, Grant CW. Biochemistry; 2002 Feb 19; 41(7):2341-52. PubMed ID: 11841227 [Abstract] [Full Text] [Related]
13. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX, Damodaran K, Blazyk J, Lorigan GA. Biochemistry; 2005 Aug 02; 44(30):10208-17. PubMed ID: 16042398 [Abstract] [Full Text] [Related]
14. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling. Gibbons WJ, Karp ES, Cellar NA, Minto RE, Lorigan GA. Biophys J; 2006 Feb 15; 90(4):1249-59. PubMed ID: 16326900 [Abstract] [Full Text] [Related]
15. Structural implications of a Val-->Glu mutation in transmembrane peptides from the EGF receptor. Sharpe S, Grant CW, Barber KR, Giusti J, Morrow MR. Biophys J; 2001 Dec 15; 81(6):3231-9. PubMed ID: 11720988 [Abstract] [Full Text] [Related]
16. Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR. van der Wel PC, Strandberg E, Killian JA, Koeppe RE. Biophys J; 2002 Sep 15; 83(3):1479-88. PubMed ID: 12202373 [Abstract] [Full Text] [Related]
17. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta. Kessel A, Shental-Bechor D, Haliloglu T, Ben-Tal N. Biophys J; 2003 Dec 15; 85(6):3431-44. PubMed ID: 14645040 [Abstract] [Full Text] [Related]
18. Transmembrane region of the epidermal growth factor receptor: behavior and interactions via 2H NMR. Rigby AC, Barber KR, Shaw GS, Grant CW. Biochemistry; 1996 Sep 24; 35(38):12591-601. PubMed ID: 8823197 [Abstract] [Full Text] [Related]
19. Investigations of polypeptide rotational diffusion in aligned membranes by 2H and 15N solid-state NMR spectroscopy. Aisenbrey C, Bechinger B. J Am Chem Soc; 2004 Dec 22; 126(50):16676-83. PubMed ID: 15600374 [Abstract] [Full Text] [Related]
20. Visualization of highly ordered striated domains induced by transmembrane peptides in supported phosphatidylcholine bilayers. Rinia HA, Kik RA, Demel RA, Snel MM, Killian JA, van Der Eerden JP, de Kruijff B. Biochemistry; 2000 May 16; 39(19):5852-8. PubMed ID: 10801336 [Abstract] [Full Text] [Related] Page: [Next] [New Search]